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AbstractÐ Zero-Knowledge Proofs (ZKP) are protocols
which construct cryptographic proofs to demonstrate knowl-
edge of a secret input in a computation without revealing any
information about the secret. ZKPs enable novel applications
in private and verifiable computing such as anonymized cryp-
tocurrencies and blockchain scaling and have seen adoption
in several real-world systems. Prior work has accelerated
ZKPs on GPUs by leveraging the inherent parallelism in
core computation kernels like Multi-Scalar Multiplication
(MSM). However, we find that a systematic characterization
of execution bottlenecks in ZKPs, as well as their scalability
on modern GPU architectures, is missing in the literature.

This paper presents ZKProphet, a comprehensive perfor-
mance study of Zero-Knowledge Proofs on GPUs. Following
massive speedups of MSM, we find that ZKPs are bottlenecked
by kernels like Number-Theoretic Transform (NTT), as they
account for up to 90% of the proof generation latency on
GPUs when paired with optimized MSM implementations.
Available NTT implementations under-utilize GPU compute
resources and often do not employ architectural features
like asynchronous compute and memory operations. We
observe that the arithmetic operations underlying ZKPs
execute exclusively on the GPU’s 32-bit integer pipeline
and exhibit limited instruction-level parallelism due to data
dependencies. Their performance is thus limited by the
available integer compute units. While one way to scale
the performance of ZKPs is adding more compute units,
we discuss how runtime parameter tuning for optimizations
like precomputed inputs and alternative data representations
can extract additional speedup. With this work, we provide
the ZKP community a roadmap to scale performance on
GPUs and construct definitive GPU-accelerated ZKPs for their
application requirements and available hardware resources.

I. Introduction

Zero-Knowledge Proofs are cryptographic protocols in which
one party (the Prover) produces a proof of knowledge π to
convince another party (the Verifier) that the Prover has
correctly performed the computation f (x, w) = y, where
f is a public function, x is a public input, and w is a
private input (aka "witness") known only to the Prover.
The proof π does not reveal any information about w

other than the Prover’s knowledge of w. ZKPs have been
adopted in real-world systems for private cryptocurrencies,
computation outsourcing, and blockchain rollups [20], [21],
[39], [45], [73], and have been studied for privacy in network
middleboxes [25], [74], verifiable machine learning [32],
verifiable homomorphic encryption [9], and improved server
authentication [16]. Proof generation latency scales with the
complexity of the computation f and takes several minutes
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Fig. 1: Speedup of ZKP GPU implementations over CPU.

on modern CPUs, while verification is constant-time and
requires a few milliseconds [24]. Accelerating Prover is thus
paramount to wider adoption of ZKPs [16], [25], [62], [74].
Given the data-parallel nature of proof generation, GPUs

have emerged as attractive platforms for accelerating ZKPs
[19], [30], [31], [42], [43], [52], [60], [63], [78]. The underlying
Multi-Scalar Multiplication (MSM) and Number-Theoretic
Transform (NTT) kernels, accounting for >95% of the work-
load, are highly parallelizable compute-intensive tasks which
can benefit from GPU implementations. This is evident in
Figure 1, which shows that GPU-accelerated ZKPs are up to
∼200x faster than CPU baselines. The number of constraints
refers to the number of inputs to the kernels and is determined
by the complexity of the computation f being proved.
While prior work has achieved significant speedups for

individual kernels on GPUs, we observe that a systematic
characterization of end-to-end proof generation on GPUs,
which studies the performance bottlenecks and scalability
on modern GPU architectures, is missing. Moreover, ZKP
frameworks for end-users [3], [19], [28], [30], [36] offer
their own implementations of the underlying computation
kernels with varying levels of performance and abstract
away implementation details behind high-level interfaces.
This furthers the gap between end-users achieving the best
performance for their ZKP workloads.
To address these limitations, we propose ZKProphet, a

comprehensive performance study of GPU-accelerated ZKPs.
Figure 2 shows an overview of our analysis. We focus
on publicly available implementations of core computation
kernels compatible with the Groth16 ZKP [24], chosen for
its succinct proofs and sub-millisecond verification time.
Since proof generation is the computationally intensive task
accelerated on GPUs (Figure 2) while verification is constant
time, this paper analyzes the Prover and uses this term
interchangeably with ZKP.
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Fig. 2: Overview of our performance analysis.

We evaluate state-of-the-art ZKP libraries on several gen-
erations of GPUs and find that the performance of MSM has
far outpaced that of NTT (Figure 2). MSM, traditionally ∼70%
of the runtime [42], [52], has been the primary focus of prior
acceleration efforts. We find that in optimized Provers, NTT
contributes up to 90% of the ZKP latency.

Our study finds that NTT implementations often under-
utilize the available GPU resources and do not leverage mod-
ern architectural capabilities to hide latencies, while optimized
MSM implementations are tailored to specific GPUs and offer
sub-optimal performance on different targets. Furthermore,
the number of constraints in the computation determines
the choice of the ideal MSM and NTT implementations for
end-to-end workloads. These disparate libraries offer limited
interoperability with each other and with end-to-end ZKP
frameworks like arkworks [3]. We therefore find opportunities
to unify different ZKP frameworks to enable plug-and-play
solutions for developers who can leverage the best tools
for their ZKP applications without needing to understand
underlying cryptographic primitives and GPU programming.

We subsequently take a quantitative approach to charac-
terize the performance of the underlying integer arithmetic
operations in MSM and NTT kernels. These operations are
performed in a finite field i.e., the results are bound by a large
prime number. We find that finite-field multiplication is the
primary component in MSM and NTT kernels (Figure 2). This
operation exhibits limited Instruction-Level Parallelism and its
performance is limited by the 32-bit integer execution units
available on the GPU. Traditional instruction latency-hiding
techniques, such as increasing the number of threads, often
degrade ZKP performance.

Analyzing several generations of modern NVIDIA GPUs,
we observe that ZKP performance improves primarily by
adding Streaming Multiprocessors (SMs), as the 32-bit integer
performance per SM has remained constant (Figure 2). More-
over, we observe that architectural improvements in newer
GPUs, specifically greater memory bandwidth and capacity,
increased shared-memory, and high-throughput execution
units are not exploited by existing implementations. We show
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Fig. 3: Groth16 Protocol showing Prover computations.

how intelligently tuning runtime parameters can improve
performance on newer GPUs.

II. Background on ZKP

In a ZKP application, the Prover produces a proof and
transmits it to the Verifier. Compact proofs with efficient
verifications have low network and storage requirements and
can enable ZKP technology at scale [21], [46], [47]. In this
paper, we focus on the Groth16 [24] ZKP, as these proofs
are less than 200 bytes and can be verified in less than 1 ms,
making them orders of magnitude more efficient than other
ZKPs [4], [57], [68], [74]. Groth16 is supported by state-of-
the-art ZKP libraries [3], [12], [19], [28], [35], [36], [38], [42],
[66] and has seen adoption in several real-world applications
[2], [18], [20], [21], [39], [47], [73]. In Groth16, MSM and NTT
kernels dominate the end-to-end execution time by more than
90% [42]. Additionally, MSM and NTT are used in several
other ZKP protocols like Marlin [11] , PLONK [23] (and its
variants), Sonic [44], Bulletproofs [10] , HALO [8], Orion [68],
Virgo [75], STARK [4], Aurora [5], and Ligero [1].

Figure 3 shows an overview of the Groth16 ZKP. The
application and its public and private inputs, x and w, are
encoded into a set of polynomials a⃗, b⃗, c⃗, and Z⃗, upon
which a series of NTT operations is performed. These
polynomials consist of large integers (e.g., 256-bit). The
resultant polynomial and the private input w are combined
with a Proving Key P , which also consists of large integers
(e.g., 377-bit), using MSM operations to generate the proof π.
The number of elements in the polynomials and the proving
key, referred to as the number of constraints, is determined
by the complexity of the application. We refer the reader
to [24] for additional details on the proof system.

The integers in MSM and NTT are elements in a finite field.
Briefly, a finite field Fp is a set of integers between 0 and a
large prime number p (i.e., the field modulus) which supports
arithmetic operations like addition, subtraction, multiplication,
and inverse. These operations are performed modulo p i.e.,
the results of field operations always lie between [0, p). For
NTT, the inputs are integers in a finite field Fr . For MSM, the
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Fig. 4: (a) Pippenger’s Bucket Algorithm for MSM and (b) Cooley-Tukey Algorithm for NTT.

elements of the Proving Key P are points on an elliptic curve
chosen for cryptographic security and performance properties.
These points on the elliptic curve consists of 2ś4 coordinates,
where each coordinate is a large integer in a finite field Fq.
The implementations studied in this work support BLS12-377
and BLS12-381 elliptic curves and associated finite fields.
Since the large integers are longer than the word size of

modern GPUs, they are represented using word-sized limbs: a
377-bit integer can be represented using 12 32-bit limbs and
the field operations are performed on these limbs.

A. Multi-Scalar Multiplication (MSM)

MSM sums up the dot product between elliptic curve
points and scalar integers: Q =

∑N−1
i=0

ki · Pi. The scale, N, is
determined by the complexity of the computation for which
a proof is being generated. For real-world applications, N

is on the order of millions. In Groth16, MSM calculates the
polynomial commitments to ensure an honest Prover and
enable succinct verification [24].

To multiply a point Pi with a scalar ki, Pi is added to itself
ki times using Point-Addition (PADD) and Point-Doubling
(PDBL) formulae. PADD and PDBL are composed of a series
of modular arithmetic operations on the underlying integer
coordinates as determined by different forms of elliptic curve
points. Common forms include Affine with 2 coordinates
(x, y), Jacobian with 3 coordinates (X, Y , Z), and XYZZ with 4
coordinates (X, Y , ZZ, ZZZ). [6] provides a list of PADD and
PDBL algorithms for various representations, and we explore
these forms in ğIV-B.

MSM is performed using Pippenger’s Algorithm [51], shown
in Figure 4(a). A λ-bit scalar is split into w windows of s-
bits each. Within each window, the s-bit scalar has 2s values
(organized as buckets). The elliptic curve points within the
window are placed into buckets with matching scalar values,
and the buckets are then summed up (PADD) in the Bucket

Accumulation process. Each bucket sum is then multiplied
by the corresponding bucket value and all the bucket values
are added up in the Bucket Reduction process. This weighted
sum is calculated with the Sum-of-Sums algorithm [60] for
each window, leaving us with w partial sums. Finally, the

weighted sum is performed on the window sums in the
Window Reduction process with PADD and PDBL operations
to get the final result.
Pippenger’s Algorithm is highly parallel in nature. Bucket

Accumulation and Bucket Reduction can be performed for each
window independently, with one thread typically assigned to
one bucket. The N points and scalars processed within each
window can be split into multiple sub-tasks, where n < N

points per window can be processed in parallel and then
combined. Window Reduction is serial and often performed
on the CPU [19], [43], [60], [76]. Numerous prior works have
accelerated MSM on GPUs [19], [30], [31], [42], [43], [60],
[63], [78] to achieve 2-3 orders of magnitude speedup over
CPU implementations for the dominant G1 MSM. G2 MSM is
performed in parallel on CPU [76].

B. Number-Theoretic Transform (NTT)

NTT computation is the Fast Fourier Transform for ele-
ments in a finite field. NTT maps a vector of field elements
a = [a0, a1, ...an] to A = [A0, A1, ...An], where Ai =

∑n−1
j=0

aiω
ij.

ω is the primitive n-th root of unity in the finite field, and
the different powers of ω are known as the twiddle factors.
Operations such as multiplication and addition on coeffi-

cients of polynomials are convolution operations with O(n2)

complexity. NTT transforms the polynomial coefficients to
enable element-wise operations, with an overall complexity
of O(nlogn). Two polynomials can be multiplied by first
transforming the coefficients using NTTs, then performing
an element-wise multiplication, followed by inverse NTTs.
As shown in Figure 3, the Groth16 Prover performs a series
of forward and inverse NTTs interspersed with element-wise
operations to calculate the polynomial h⃗.

Figure 4(b) shows the radix-2 Cooley-Tukey algorithm [13].
The butterfly operation on elements 0 and 4 calculates A0 =

A0 + A4 · ω0 and A0 = A0 − A4 · ω0 using modular addition,
subtraction, and multiplication. A scale N NTT contains N/2

butterfly operations and log2(N) stages. The input elements
are shuffled after each stage.

The NTT algorithm is also highly parallelizable. In a typical
GPU implementation [19], [42], each thread performs the
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Butterfly Operation on a pair of elements. The input vector is
divided among several blocks, and each block with r threads
performs a radix-2r Cooley-Tukey algorithm. The sizes of the
blocks are determined by the capacity of the shared memory,
which is used for data shuffles and storing the precomputed
twiddle factors. Different stages can be processed in batches.
Prior GPU acceleration efforts for ZKPs [19], [42], [43], [63]
have achieved 1-2 orders of magnitude of speedup over CPU
implementations. In our analysis, INTT and NTT exhibit a
similar performance profile, and in the rest of this paper we
represent them as NTT.

III. Experimental Methodology

A. ZKP Libraries

Library Platform MSM NTT Groth16 Prover

arkworks [3] CPU ✓ ✓ ✓

bellperson [19] GPU ✓ ✓ ✓

sppark [63] GPU ✓ ✓ ✗

cuzk [42] GPU ✓ ✓ ✓

yrrid [60] GPU ✓ ✗ ✗

ymc [60] GPU ✓ ✗ ✗

TABLE I: ZKP libraries evaluated in this work.

Table I lists the ZKP libraries evaluated in this work.
arkworks [3] is a CPU-based Rust framework for developing
ZKPs and supports a variety of proof systems (including
Groth16) and supports for a variety of elliptic curves, finite
fields, and point representations.
bellperson [19] is a GPU library for Groth16, with

OpenCL/CUDA implementations of Pippenger’s MSM Algo-
rithm and radix-2r Cooley-Tukey NTT. sppark [63] is a
GPU library with optimized implementations of MSM and
NTT kernels which uses arkworks to instantiate different
finite fields. cuZK [42] accelerates the Groth16 protocol with
its own framework using novel parallelization techniques
to achieve significant speedup over baseline CPU imple-
mentations. yrrid [59] is a GPU library from the ZPrize
competition [52], an industry-sponsored effort to accelerate
a batch of MSMs with scale 226 on GPUs for the BLS12-377
elliptic curve. ymc [60] augments yrrid with optimized finite-
field routines and workload decomposition techniques for
additional performance gains.
We restrict our analysis to the above mentioned libraries

because of their high performance, functionality, and com-
patibility with ZKP computations. ICICLE [30] is another
GPU acceleration library for ZKPs, but the performance
analysis opportunities are limited as the GPU implementations
aren’t open-source. GPU-NTT by Ozcan et al. [79] provides
optimized NTT algorithms with performance improvements
over sppark. However, the publicly available implementation
isn’t yet compatible with the finite fields required for ZKPs.

B. Software and Hardware Infrastructure

We utilize arkworks to generate test cases and instantiate
the underlying cryptographic primitives like elliptic curves
and finite fields and measure CPU baselines. arkworks is
an open-source framework supporting a variety of proof
systems, cryptographic primitives, and computation kernels

and is adopted in industry-sponsored ZKP acceleration efforts
like [52]. The GPU kernels and additional microkernels for
performance characterization are written in C++ and CUDA
and compiled using CUDA Toolkit 12.8 on Ubuntu 22.04.
cuZK was tested using CUDA Toolkit 11.5 as that is the latest
version supported by the implementation. We use NVIDIA
Nsight Compute 2025.1 to profile the applications and analyze
the performance on GPUs and measure the execution latency
using cycle counters. We measure the energy consumption
of CPU and GPU implementations using Zeus [72].
The CPU baselines are evaluated on a dual socket server

with AMD EPYC 7742 64-Core Processors and 2 TB RAM. GPU
studies are primarily conducted on NVIDIA A40 GPU with
48GB of memory. In ğIV-D, we perform additional analysis of
key finite-field operations on several generations of NVIDIA
GPUs: Volta V100, Turing T4, Ampere RTX 3090 and A100,
Ada Lovelace L4 and L40S, and Hopper H100.

C. Key Research Questions

As described in ğII, GPUs are suitable targets for accel-
erating the MSM and NTT algorithms. Several optimized
GPU implementations for MSM and NTT have been proposed
recently in industry and academia [19], [30], [31], [42], [43],
[60], [63], [78]. While these implementations build upon
Pippenger’s and radix-2r Cooley-Tukey techniques, they differ
in their choices of algorithmic optimizations, elliptic curve
point representations, parallelization techniques, and other
GPU implementation details, introducing varying computation
and storage overheads.

Therefore, we first seek to understand which implemen-

tations are fastest at different input sizes and why.
This insight is crucial for application developers who seek to
maximize ZKP performance without diving into underlying
cryptography and GPU architectural details. We then evaluate
the overall Prover latency using the fastest kernels

(ğIV-A) to find where the bottlenecks lie. We study the
performance and microarchitectural execution of the

modular finite-field operations in MSM and NTT (ğIV-B
and ğIV-C) to discover key optimization targets. Finally, we
ask how the performance of finite-field operations

has evolved over subsequent generations of NVIDIA

GPU architectures (ğIV-D) to understand the effect of GPU
architecture scaling on the ZKP workload.

IV. ZKProphet: A Performance Deep-Dive

A. Analysis at the Kernel Layer

We evaluate the libraries listed in Table I and report the
speedups of the fastest MSM and NTT implementations over
CPU baselines at different scales in Table II. Scale refers
to the input size for MSM and NTT and is determined by
the application circuit for which a proof is generated. The
table shows that there is no single implementation that
performs best at different scales.
For MSM, sppark [63] is the fastest implementation at

scales up to 220. The implementation achieves acceleration
through the XYZZ point representation, sorting the Pippenger
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Scale
MSM NTT

Speedup (×)

over CPU
Fastest
Library

Speedup (×)

over CPU
Fastest
Library

215 34.1 sppark 12.5 bellperson

216 52.5 sppark 12.3 bellperson

217 69.7 sppark 14.8 bellperson

218 78.1 sppark 20.4 cuzk

219 127.5 sppark 27.9 cuzk

220 176.1 sppark 35.4 cuzk

221 254.1 yrrid 45.0 cuzk

222 408.1 ymc 50.6 cuzk

223 589.4 ymc 50.3 cuzk

224 693.2 ymc 40.5 bellperson

225 754.3 ymc 20.4 bellperson

226 799.5 ymc 24.3 bellperson

TABLE II: Speedup over CPU for the fastest MSM and NTT
implementations at different input sizes (Scale).

buckets by the number of points for balanced workload
distribution across threads, and minimizing the number
of SASS instructions through tailored finite-field routines.
For larger scales, ymc [60] offers the highest speedup. In
addition to the optimizations employed by sppark, ymc

exploits (1) signed-digit endomorphism to halve the number
of buckets, (2) pre-computed window weights to minimize
Bucket Reductions, and (3) decomposition of large-scale MSMs
into smaller MSMs to overlap compute with data transfer. The
implementation is tailored to problem scales for the Z-Prize
competition [52], and the pre-processing required for these
optimizations is expensive at smaller scales, taking up to 30%
of the MSM compute time. ymc is thus better for larger scales
or large batches of MSMs.
For NTT, bellperson [19] offers the highest speedup at

scales 215 to 217. It implements the radix-256 Cooley-Tukey
algorithm to combine up to 8 NTT stages into a single kernel
launch. At larger scales, cuzk [42] emerges as the fastest
implementation, improving performance by reducing CPUś
GPU data movement, storing precomputed twiddle factors
in device memory, and coalescing GPU memory operations.
For scales beyond 223, cuZK NTT reports Memory Allocation
and Segmentation Fault errors.
bellperson offers the best performance at scales beyond

223. However, the GPU workload distribution is not optimal.
A 226 NTT uses 4 kernels - 3 radix-256 NTTs and 1 radix-
2 NTT. The final radix-2 kernel has an imbalanced launch
configuration of 16 million blocks of 2 thread each because
of how the implementation is structured. This leads to
critical underutilization of the GPU resources, specifically
the Streaming Multiprocessor (SM) and its Sub-Partitions
(SMSP), which run 32-thread warps in lockstep. Moreover,
the kernel uses <5% of the available device memory. The
reduced speedup at larger scales is shown in Figure 1.

Figure 5 shows the execution time breakdown of ZKP into
MSM and NTT kernels at different scales. This figure ignores
other kernels as they are negligible with a time share of
less than 5% overall time. The figure shows that even with
modest proof sizes (up to 220), NTT consumes ∼50% of the
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proof generation time; this issue is exacerbated at larger proof
sizes, where NTT contributes up to 91% of Prover’s runtime.
Therefore, ZKP workloads are bottlenecked by NTT.

To further investigate, Figure 6 compares the kilo in-
structions executed per second for the fastest MSM and
NTT implementations across various problem scales. This
metric reflects the GPU’s instruction throughput, enabling
a direct performance comparison between MSM and NTT.
As the problem scale increases, NTT executes significantly
fewer instructions per unit time than MSM. As noted in ğI,
GPU acceleration for ZKP workloads has largely focused on
optimizing MSM kernels, driven in part by initiatives like the
Z-Prize [52]. Our study highlights a substantial opportunity
to improve the performance of NTT kernels.

To understand this discrepancy, we compare the amount of
time spent by both MSM and NTT on computing data on the
GPU and CPU-GPU data transfers in Figure 7. Optimized MSM
implementations utilize asynchronous memory copies between
CPU and the GPU and the GPU’s global and shared memories
to overlap data movement with compute. The latency of these
memory operations are not hidden in NTT implementations
like bellperson [19]. Furthermore, the Prover performs seven
NTT operations, each with multiple kernel launches. We find
that the on-device compute time of the butterfly operation is
modest compared to the expensive CPU-GPU data transfers.
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This is shown in Figure 7, where the fraction of the GPU
compute time for NTT is much lower than CPU-GPU
data transfer time than MSM.

Scale
CPU Energy Relative to GPU

NTT MSM
16 2.74 2.74
18 3.08 9.06
20 3.21 27.59
22 3.31 102.59
24 2.93 236.90
26 3.62 398.40

TABLE III: CPU energy consumption normalized to GPU for
NTT and MSM across different scales.

We utilize Zeus [72] to evaluate the energy consumed by
CPU and GPU implementations of NTT and MSM kernels at
various scales. Table III reports the CPU energy consumption
normalized to the GPU energy consumption for both kernels
across varying scales. We observe that CPU-NTT consumes
3.1× more energy than GPU-NTT on average, while CPU-
MSM can consume up to ∼400× more energy than GPU-MSM
at scales of 226. The energy efficiency of MSM on GPU stems
primarily from the latency speedup of ∼800× compared to
∼50× for NTT, as discussed in Table II. Additionally, the
energy efficiency of GPU-MSM increases with the kernel
scale due to well-optimized GPU implementations, whereas
GPU-NTT executes short, bursty kernels often with sub-
optimal launch parameters, as discussed earlier in this section.
These results underscore that further NTT acceleration is

crucial for improving energy efficiency and facilitating
ZKP deployment at scale.

Key Takeaways:

• No single MSM or NTT implementation is univer-
sally fastest across all problem scales.

• As MSM has been heavily optimized, NTT emerges
as the dominant bottleneck.

• Current NTT implementations incur significant
overhead from CPU-GPU data transfers.

B. Analysis at the Finite-Field Layer

The high-bitwidth integers used in MSM and NTT are
elements in a finite field, and arithmetic operations are
performed with modular reductions (ğII).
Figure 8 shows the percentages of the total execution

times taken by the various field operations. NTT uses
FF_add, FF_sub and FF_mul in the butterfly operations and
FF_mul/FF_sqr to calculate the twiddle factors. MSM uses the
field operations as part of the elliptic curve addition (PADD)
and doubling (PDBL) functions. FF_mul and FF_sqr exhibit
similar performance profiles and are together responsible
for 93.8% and 80.0% of the total execution time of NTT and
MSM, respectively. We characterize the performance of field
operations on the CPU and the GPU using microbenchmarks
designed to maximize GPU occupancy and limit expensive
memory accesses.

NTT

2.6%
3.6%

93.8%

MSM

0.6%
15.8%
3.6% 80.0%

FF_op
FF_add FF_sub FF_dbl FF_mul/sqr

Fig. 8: Breakdown of execution time into Finite-Field opera-
tions (FF_mul and FF_sqr have similar performance).

FF_op FF_add FF_sub FF_dbl FF_mul FF_sqr
CPU 29 27 19 402 402
GPU 244 217 121 2656 2633

TABLE IV: Execution latencies (in cycles) of finite-field
operations on CPU and GPU.

Table IV compares the latency of a single finite-field

operation on CPU and GPU. CPUs can natively process 64-
bit data elements compared to the 32-bit granularity of the
GPU’s integer units, and halving the number of limbs reduces
the number of instructions. After an FF_op completes, all
limbs of the integer are sequentially compared against the
field zero/modulus for underflow/overflow. These conditional
operations serialize the warp execution on the GPU (i.e., warp
divergence), which further increases the latency gap with
the CPU. Despite a longer per-operation latency, GPUs can
efficiently exploit the massive data-level parallelism in MSM
and NTT to extract speedups shown in Figure 1. The NVIDIA
A40 GPU features 84 streaming multiprocessors (SMs), each
with 128 execution units capable of 32-bit integer operations,
allowing it to run up to 10,752 threads in parallel. In contrast,
typical CPUs support only around 256 threads. This stark
difference underscores the importance of leveraging data-
level parallelism on massively parallel, high-throughput
architectures to accelerate ZKP workloads effectively.

1) Field Addition, Subtraction, and Doubling: Table IV shows
the GPU cycle latencies of FF_add, FF_sub and FF_dbl.
This computation can be divided into two portions: a field
operation (compute), control flow operations to determine if
a reduction is necessary (branch), and a field operation to
reduce the value (compute). Our investigation shows that
the branches determining conditional reduction make up
70.5% of the overall execution latency. In the absence of any
branches, compute operations, FF_add and FF_sub, require
72 cycles each. The FF_add and FF_sub operations use the 32-
bit add{c}.cc and sub{c}.cc PTX instructions, which are
compiled into IADD3 SASS instructions. FF_dbl efficiently
doubles an element by left shifting each limb by 1 and
propagating carry-bits. It is implemented using bit-shifting
and the SHF SASS instruction dominates FF_dbl operations.
The latency of FF_dbl is reported in Table IV and is lower
than the latency of FF_add.
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Coordinates
Affine Jacobian XYZZ
(x, y) (X, Y , Z) (X, Y , ZZ, ZZZ)

FF_op count PADD PDBL PADD PDBL PADD PDBL
FF_add 0 2 1 2 0 1
FF_sub 6 4 8 6 6 3
FF_dbl 0 2 5 6 1 3
FF_mul 3 2 7 2 8 6
FF_sqr 0 2 4 5 2 3
FF_inv 1 1 0 0 0 0
Total

(FF_mul/sqr %)
10 13 25 21 17 16

43.5 39.1 57.6

TABLE V: Finite-field operation counts for PADD and PDBL

in different coordinate representations.

2) Field Multiplication and Field Squaring: FF_mul mul-
tiplies two 32-bit field elements while FF_sqr multiplies
an element with itself. As reported in Table IV, FF_mul

and FF_sqr require ∼10× more cycles to compute and
conditionally reduce the result. These field operations are
primarily composed of IMAD SASS instructions (70.8% of the
instruction mix). They are generated from the mad{c}.hi/lo

PTX instructions for integer multiply and accumulate on
higher and lower 32-bits of the 64-bit product. IMAD instruc-
tions have a longer issue latency of 4 cycles compared to
IADD3’s 2 cycles, and prior works accelerating FF_mul in
elliptic curve signatures convert expensive IMAD instructions
to IADD3 instructions [69]. The adaptation of these techniques
to ZKP kernels merits further study.

3) Field Inverse: The FF_inv operation, implemented with
the binary extended-Euclidean algorithm [69], is ∼100×
slower than FF_mul due to numerous divide-by-2 operations
and branch instructions. Given these overheads, FF_inv is not
suitable for GPU acceleration, and MSM implementations do
not use elliptic curve forms, like Affine, which require FF_inv

in the PADD and PDBL operations. Instead, elliptic curve
points are represented using alternate forms like Jacobian
and XYZZ, which add additional coordinates (increasing the
memory footprint) while replacing FF_inv operations with
other field operations [6]. The FF_op mixes for different
point representations are shown in Table V. FF_mul and
FF_sqr make up a significant portion of the total number of
operations.

Key Takeaways:

• Despite higher per-operation latency than CPU,
GPUs leverage their high-throughput architecture
to exploit data-level parallelism in ZKP, yielding
significant performance gains.

• FF_mul dominates the end-to-end execution time.
• FF_inv is significantly slower than its counterparts,
avoiding Affine representation that uses FF_inv is
recommended.

C. Analysis at the Microarchitecture Layer

We now explore the performance of the finite-field op-
erations with key GPU microarchitecture metrics collected
through NVIDIA Nsight profiling tools.
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Fig. 9: Roofline analysis of finite-field operations in ZKP.
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operation with varying number of warps per SM.

1) Roofline Analysis.: Figure 9 plots the performance of
the finite-field operations within the Roofline envelope of the
NVIDIA A40 GPU. Throughput of the 32-bit integer execution
units determines the compute bound and the bandwidths of
the GPU L1, L2, and DRAM determine the respective memory
bounds. We augment NVIDIA Nsight Compute Roofline
Analysis to collect integer instruction metrics as finite-field
operations in ZKP rely exclusively on integer instructions.
The GPU performance counters capture the dynamic mem-
ory and instruction traffic to calculate Arithmetic Intensity
(FLOPs/byte) and Performance (GFLOPs/s). We assign the 32-
bit integer multiply and accumulate instructions (IMAD SASS)
a weight of 2 and other integer instructions a weight of 1,
consistent with NVIDIA’s methodology [49], [50] and prior
work [70] for floating-point and tensor instructions.

The figure shows that FF_mul and FF_sqr exhibit higher
arithmetic intensity than other operations, as they perform
more computations per unit of data read. Looking into the
FF_op performance, we find that FF_mul and FF_sqr are
able to achieve 60% of the device’s maximum theoretical
performance with a majority of IMAD instructions, while
FF_add, FF_sub, and FF_dbl are limited to 40% of the
maximum integer throughput as they primarily rely on IADD3

and SHF instructions. Our analysis shows that the key limiter
in the performance of FF_ops is that the GPU schedulers
issue new instructions every 3.2 cycles instead of every cycle,
and 67.5% of the cycles see no eligible warps to issue from.
To understand these warp bottlenecks further, we explore the
sources of warp stalls.
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FF_op / Metric FF_add FF_sub FF_dbl FF_mul FF_sqr
Branch

Efficiency (%) 52.5 56.2 77.5 84.0 96.9
Achieved

Occupancy (%) 25.0
Dominant SASS
Instruction (%) IADD3 IADD3 SHF IMAD IMAD

Pipeline

Bottleneck Integer Integer Integer Integer Integer

TABLE VI: GPU microarchitecture metrics for FF_ops.

2) Pipeline Bottlenecks: Figure 10 shows the average stall
latency (in cycles) of the resident warps from different sources.
A higher stall latency implies a worse overall performance for
FF_mul. The FF_mul operations, executed with 2 warps per
SMSP (representative of MSM configurations), show a warp
stall latency of 6.2 cycles.

The first stall source at ∼4 cycles is Stall Wait, which de-
notes a fixed-latency execution dependency. FF_mul executes
a series of IMAD instructions, and a new IMAD instruction
dependent on the previous one can be issued after the 4 cycle
instruction latency, provided there are no other stalls. The
next stall source is Selected, which is a 1-cycle latency of
issuing a new instruction from the warp. This occurs when
the warp has been selected by the SMSP scheduler to issue
an instruction when its dependencies have been met and the
pipeline is available.

Stall Math Pipe Throttle occurs when a specific execution
pipeline, in this case the INT32 pipeline, is oversubscribed.
This is because finite-field operations in ZKPs exclusively
use the integer execution units. Increasing the number
of active warps, as suggested in NVIDIA documentation
to hide latency [49], does not improve performance. As
shown in Figure 10, this stall increases as the number
of active warps per SM increases, because the warps are
still competing for the same limited pipeline. The other
guideline is to utilize additional pipelines by changing the
instruction mix. This approach merits further exploration,
as the floating-point units on the GPU, which have higher
throughput, are idle in ZKP kernels.

The next stall source is Stall Not Selected, which specifies
that a warp was eligible for being selected but the scheduler
picked a different warp to issue from. As expected, this stall
source increases with additional warps as the pool of ready
but bottlenecked warps grows.

Finally, we study the remaining stall sources from in-
struction cache misses, branch target computations, memory
pipeline throttling, and L1 cache data access. These sources
combined together are a small fraction of the overall stall
latency and they do not increase with additional warps. As
such, they are reported using Stall Other in Figure 10.

We now look at Table VI, which shows other metrics
influencing the performance of FF_ops in MSM and NTT.

3) Branch Efficiency: This metric denotes the proportion
of branch targets where all (active) threads of a warp select
the same target. In other words, a branch efficiency of 100%
implies no thread divergence in the warp. FF_add and FF_sub

exhibit branch efficiencies of 52.5% and 56.2% respectively,

stemming from the sequential comparison between the
corresponding limbs of the result and the field modulus/zero.
These divergences causes a 2.4× increase in execution cycles
(72 to 244 as discussed in ğIV-B1).

FF_dbl has a higher branch efficiency of 77.5%. When dou-
bling is performed with FF_add, the efficiency of FF_add also
jumps up to 77.5%. The inputs for the G1 MSM kernel which
are processed by the finite-field operations are uniformly
random [42], [60]. Addition with a random field element is
more likely to result in one of the limbs ending up outside
the corresponding field modulus limb for any one of the 32
threads in a warp.

FF_mul and FF_sqr have much higher branch efficiencies
of 84.0% and 96.9% respectively. The multiplication algorithm
performs a cross-product of all the limbs, addition of higher
and lower 32-bit parts of 64-bit products, followed by the
reduction operations [17], [69]. The branch efficiency is high
because most products require a final reduction operation,
with the only difference being in which of the limbs is outside
the modulus range. The branch divergence is only responsible
for 3.8% of the total cycles in FF_mul and FF_sqr compared to
70.5% for FF_add and FF_sub. Branch efficiency is critical
for optimizing performance, as this metric is less than
50% in MSM implementations.

4) Achieved Occupancy: Occupancy refers to the number
of blocks resident on each GPU SM. Theoretical Occupancy is
determined by the GPU’s Compute Capability (CC), per-thread
register usage and per-block shared-memory usage, while
Achieved Occupancy is determined by launch configuration of
<<<blocks, threads>>>. While a higher occupancy can hide
latencies and enable better GPU utilization, it is not necessary
to achieve optimal performance [64]. bellperson employs a
launch configuration of <<<168, 128>>>, while sppark

and ymc use launch configurations of <<<84, 128>>>

for MSM kernels on NVIDIA A40. ymc hides memory
latencies using asynchronous memory transfers between the
GPU memories and caches (introduced in the Ampere [50]
microarchitecture). MSM kernels additionally exhibit high
register usage: bellperson, sppark, and ymc require up to 228,
216, and 244 registers per thread. A large number of live
registers are required to perform FF_mul operations on 4
12-limb (up to 384-bit integers) coordinates in the XYZZ
representation. NTT has a lower live register count of 56,
since (1) each scalar is a single 8-limb element and (2) the
dependence chain of FF_ops is much shorter in NTT butterfly
operations than MSM PADDs.

Key Takeaways:

• With memory latencies hidden, the performance is
bottlenecked by INT32 cores.

• Adding additional threads may increase stalls and
negatively impact performance.

• Branch efficiency is critical for ZKP performance.
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Fig. 11: FF_mul performance across GPU generations.

D. FF_mul performance across GPU generations

Recent GPU advancements have been primarily motivated
by AI models like LLMs, and this section explores how
these innovations may benefit ZKP workloads. We study the
performance of FF_mul over multiple generations of GPU
architectures to understand speedup sources and discover
future performance improvement opportunities for ZKPs.

Since the benchmark scales well across the number of
available SMs, we observe that the runtime is inversely
proportional to the number of SMs. Figure 11a shows that
the NVIDIA L40S (CC 8.9), with 24.6% more SMs, is 1.5×
faster than NVIDIA H100 (CC 9.0).

For a deeper analysis of the FF_mul performance profile, we
analyze the warp stall sources and the latency per FF_mul

and plot the results in Figure 11b. We see that the warp
stall latency is consistent across the 8 GPUs evaluated with
an average value of 6.26. As discussed in ğIV-C, this stall
latency encapsulates the effects of different microarchitectural
features, and we see a similar stall latency breakdown across
GPU generations. Consequently, the latency per FF_mul in
cycles is also constant at 2660.06 cycles on average.

Put together, these results reveal that the performance
scaling of existing well-optimized NTT [42] and MSM [42],
[60], [63] implementations is primarily driven by additional
SM units available on the GPU, with the per SM perfor-
mance being more or less constant. While newer GPU
generations offer improved memory bandwidth, existing MSM
implementations hide the memory latency well using the
asynchronous data transfers between the global memory and
caches/shared memory. Metrics determining the performance
at the microarchitecture level, such as registers/thread, warp
size, 32-bit IMAD throughput, and the number of INT32
pipelines, have been constant across several generations of
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elliptic curve points across Pippenger windows.

NVIDIA architectures [48]. Other architectural improvements
focus on tensor cores, which are unused in FF_ops.

1) Additional performance scaling opportunities: Successive
generations of NVIDIA GPU architectures have focused on
improving the GPU memory bandwidth and cache/shared-
memory capacities along with increasing the available GPU
memory. Since the per-SM INT32 performance remains the
same, we can employ optimizations with fewer FF_mul

operations at the cost of additional memory usage. We briefly
discuss two optimizations.

a) Reducing windows with precomputation.: As
discussed in ğII-A, the Bucket Reduction step uses the Sum-
of-Sums algorithm to compute the sum of each window using
2 ∗ 2c PADDs per window. For a representative window size
of c = 23 bits, a 253-bit scalar requires w = 11 windows, and
each window thus requires 16.7 million PADDs. To reduce
the number of windows, we can precompute 2q∗c ∗ Pi for
each point Pi. Then, instead of adding point Pj to window

q = 3, we can add 23∗c ∗ Pj to window 0. This optimization
is especially useful when processing a batch of MSMs where
the points Pi are fixed [43], [60].

For scale n = 226, each set of points (represented initially
in Affine form) requires 6 GiB of memory. Given a window
size c = 23 and 10 FF_mul operations per PADD, Figure
12 plots the number of FF_mul operations required for
Bucket Reduction as we decrease the number of windows by
precomputing additional points. The figure also shows the
storage required (in GiBs) to store the precomputed points
on the GPU memory. Reducing the number of windows
through precomputation can significantly reduce the
number of FF_muls, provided enough device memory is
available. For example, the MSM can be executed with w = 4

windows on the 24 GB NVIDIA L40, with w = 2 windows on
the 48 GB NVIDIA A40, and w = 1 window on the 80 GB
NVIDIA A100 and H100 GPUs.

b) Representing points in Affine form: The Montgomery
Trick for Batched Inversion [22] replaces N FF_invs with
1 FF_inv and 3N FF_mul for Affine forms. To calculate
the inverses of N elements, this approach multiplies the N

elements together and performs a single inverse of the final
product. During these multiplications, the partial products
generated at each step of the multiplication are stored. Since
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the multiplications are done in a finite field, the partial and
final products are constant-sized field elements. These partial
products are then multiplied individually with the inverse of
the final product to extract the N inverses.
For n = 226 elliptic curve point additions, the Affine

representation and the Montgomery Trick can reduce the
number of FF_mul operations by 3.3× and 3.6× for the
XYZZ and Jacobian representations, provided that the cost of
the FF_inv can be amortized over a large enough batch size.
This approach produces a lot of intermediate data in terms
of the partial products and their inverses, which exceed the
L1/L2 cache sizes of the GPU, leading to expensive global
memory accesses. For example, a batch size of 220 for a large
scale MSM would require an additional 300 MB for storing
the intermediate products and the inverses, which exceeds
the 40 MB and 50 MB L2 caches of the NVIDIA A100 and
NVIDIA H100 respectively.
Prior work [69] implements the Montgomery Trick for

a throughput-focused elliptic curve arithmetic library by
employing Gather-Apply-Scatter techniques over the warps
and fine-grained control of the memory hierarchy. The
application of these techniques to the MSM algorithm by
leveraging the increasing memory sizes and bandwidths on
modern GPUs requires further study.

Key Takeaways:

• ZKP performance is driven by the number of SMs
on the GPU.

• Per-SM performance of FF_mul is constant across
several GPU generations.

• Future optimizations should utilize the growing
memory capacities and bandwidths in GPUs.

V. Next Steps in the ZKP Ecosystem

Based on our quantitative analyses, we provide several
recommendations for future software and hardware develop-
ments in the GPU-accelerated ZKP ecosystem.

A. For ZKP Application Developers

Optimizing proof generation on GPUs requires selecting
appropriate kernel implementations based on the application
circuit size, and relevant recommendations are provided
in Table II. However, these implementations offer limited
interoperability with each other and with end-to-end ZKP
frameworks (like arkworks [3], libsnark [38], and xjsnark [36]),
which convert the application code into inputs for the Prover.
End-user ZKP applications [20], [25], [62] thus utilize CPU-
based or slower GPU-based Provers and miss out on orders
of magnitude of speedups. Constructing a high-performance
Prover would thus require manual effort to integrate the
required components. Accelerated implementations often
feature hand-tuned optimizations for underlying elliptic curves
and finite fields with custom algorithms and PTX routines,
and they may target a specific GPU architecture or chip,
further hindering interoperability. Additionally, the proof

generation design space spans several parameters like (1)
the choice of the framework to generate constraints, (2) the
elliptic curves and finite fields to encode inputs, (3) kernel-
specific optimizations like precomputed inputs, all driven by
(4) hardware parameters like available GPU compute units
and global and shared memories. These numerous tunable
parameters are currently manually picked for each application,
motivating the development of autotuning tools which can
optimally adapt an application to a Zero-Knowledge Proof
on the target GPU at runtime.

B. For GPU Kernel Programmers

State-of-the-art MSM kernels [31], [52], [60], [63] offer
speedups over CPUs up to 800×, while ZKP-compatible NTT
kernels are limited to 50× and constrain end-to-end speedup
(Figure 1). NTT should therefore be a key acceleration target
moving forward. Prior work [26], [33], [34], [55], [56], [61]
can be adapted to ZKPs while accounting for larger bitwidth
requirements and utilizing optimized finite-field routines from
MSM libraries [60], [63]. Optimized kernels are often tailored
to a specific GPU and may under-utilize the resources of
newer generations of GPUs. For example, NVIDIA H100 with
80 GB of memory can support more precomputed windows in
the ymc MSM implementation to extract further speedup
(ğIV-D). Future implementations should therefore ensure
maximum utilization of available hardware resources. Moving
forward, accelerated kernels should emphasize interoperability
with end-to-end ZKP frameworks to enable wider adoption.
arkworks [3] is a viable target given its support for a variety
of proof systems, elliptic curves, and finite fields as well as
adoption in industry-driven acceleration efforts [52]. Finally,
alternate proof systems like Orion [68], STARK [4], and Aurora
[5] can be accelerated with GPU implementations of primitives
like vector operations, hashing, and Sum-Check [29].

C. For GPU Architecture Designers

Our analysis in ğIV-D shows that the performance of 32-
bit integer pipelines has remained constant across several
generations of GPU architectures. Since optimized MSM
implementations like [31], [60], [63] utilize the available
memory bandwidth by overlapping compute with data
movement between different levels of the GPU memory
hierarchy, Prover performance improvements primarily stem
from adding Streaming Multiprocessors. The SM architectural
improvements have been restricted to 32-bit floating-point
pipelines, which double the instruction throughput from the
Ampere generation onward by utilizing the integer pipelines,
and Tensor Cores, which offer generational performance
improvements for low precision (4-16 bit) integer and floating-
point types. Adapting these architectural improvements for
32-bit integer computations (specifically the IMAD instruction),
supporting higher-precision integer computations (similar
to 64-bit floating-point instructions), concurrently utilizing
integer and floating-point units [69], and supporting higher-
precision arithmetic in Tensor Cores can further scale ZKP
performance on GPUs.
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VI. Related Work

ZKPs are powerful cryptographic primitives with applica-
tions in private and verifiable computing [2], [9], [16], [18],
[20], [21], [25], [32], [39], [45], [47], [62], [73], [74]. Groth16
[24] is a popular proof system due to its compact proof
sizes and constant verification time, and its MSM and NTT
kernels have been accelerated on CPUs [3], [27], [66], GPUs
[19], [30], [31], [42], [43], [52], [60], [63], [78], FPGAs [53],
[54], [67], [71], [77], and ASICs [15], [40], [76]. Additional
efforts [14], [37], [41], [57] target alternate proof systems
which offer improved Prover performance but at the cost
of Verifier performance and increased proof sizes. Proofs
generated by these protocols can be combined with Groth16
proofs to for small proof sizes and constant Verifier latency.
NTT acceleration efforts have primarily been driven by HE
applications [7], [26], [33], [34], [55], [56], [61], [65] and merit
further study for ZKPs. [58] presents a top-down analysis of
CPU implementations of the Groth16 protocol, focusing on
higher-level stages (Compile, Setup, Witness, Proving, and
Verifying) of ZK-SNARKs. In contrast, ZKProphet presents a
detailed analysis of the Proving step on GPUs, the primary
hardware platform for proof generation.
To the best of our knowledge, ZKProphet is the first

work performing detailed performance analysis of ZKP proof
generation workloads on GPUs.

VII. Conclusion

We present ZKProphet, a detailed performance characteri-
zation of end-to-end proof generation on GPUs. We find that
state-of-the-art libraries significantly optimize Multi-Scalar
Multiplication, shifting the performance bottleneck to Number-
Theoretic Transform. The fastest proof-generation framework
at a particular application size typically comprises of kernels
from different libraries, which offer limited compatibility
each other and require manual integration efforts. Through
detailed microarchitectural studies on a diverse set of GPUs,
we identify that performance scaling of ZKPs is limited by
the GPUs’ integer execution units, and critical GPU resources
are often underutilized. End-to-end proof generation on GPUs
can be further optimized by tailoring implementations to
application parameters and available GPU resources.
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