
1

Blockchain as a Service: A Decentralized and

Secure Computing Paradigm
Gihan J. Mendis∗, Yifu Wu∗, Jin Wei∗, Moein Sabounchi∗, and Rigoberto Roche’†

∗Department of Computer and Information Technology

Purdue University, West Lafayette, Indiana
†NASA Glenn Research Center, Cleveland, Ohio

Abstract—Thanks to the advances in machine learning, data-
driven analysis tools have become valuable solutions for various
applications. However there still remain essential challenges to
develop effective data-driven methods because of the need to
acquire a large amount of data and to have sufficient computing
power to handle the data. In many instances these challenges
are addressed by relying on a dominant cloud computing ven-
dor, but, although commercial cloud vendors provide valuable
platforms for data analytics, they can suffer from a lack of
transparency, security, and privacy-perservation. Furthermore,
reliance on cloud servers prevents applying big data analytics
in environments where the computing power is scattered. To
address these challenges, a decentralize, secure, and privacy-
preserving computing paradigm is proposed to enable an asyn-
chronized cooperative computing process amongst scattered and
untrustworthy computing nodes that may have limited computing
power and computing intelligence. This paradigm is designed
by exploring blockchain, decentralized learning, homomorphic
encryption, and software defined networking(SDN) techniques.
The performance of the proposed paradigm is evaluated via
different scenarios in the simulation section.

Index Terms—Blockchain, Decentralized and Secure Learning,
Machine Learning, Privacy, Security

I. INTRODUCTION

Due to the advances in sensing and computing, data-driven

methods, such as machine learning techniques [1], have be-

come very promising solutions for different applications [2]–

[4]. However, there are two essential challenges in imple-

menting these techniques: (1) acquisition of large amount of

data, and (2) requirement of enough computing power, which

enforces the reliance on a dominant cloud computing vendor.

Although the cloud servers provide valuable platforms for big

data analytics, there remain several essential challenges in

adopting the commercial cloud vendors: (1) transparency, (2)

security, and (3) privacy [5]. With the rise of awareness for

data privacy, end-users have become reluctant to share their

data. Also, in another perspective, user data are becoming a

valuable asset. In some domains, such as the healthcare sector,

federal and civil service offices, there is an abundance of

valuable data, however, due to privacy laws and regulations,

these data cannot be shared with the third party. Furthermore,

the reliance on cloud servers also limit the potentials of

applying big data analytics for the environment where the

computing power is scattered. Therefore, it is meaningful to

develop a reliable infrastructure in which end-users or data

creators are able to secure the ownership of data while being

able to contribute to machine learning tasks in a privacy-

preserving manner with reasonable financial incentivation. To

achieve this goal, in this paper we develop a decentralized and

secure computing infrastructure that enables an effective and

privacy-preserving collaboration between the available end-

users and data creators that are called computing nodes in this

paper. These computing nodes can have restricted computing

power and limited computing intelligence. Additionally, they

can be scattered and untrustworthy to each other.

In recent years, several techniques have been proposed

to achieve decentralized and privacy-preserving computing.

In [6], Shokri et al. proposed a privacy-preserving deep-

learning mechanism with secure multi-party computations to

update the single initial deep learning model. However, the

deep learning model is centralized while multiple parties

contribute to the model training in a manner that guaranties

the privacy-preservation. Federated learning introduced in [7]–

[10] is a distributed machine learning method that enables

model training on decentralized data. In this method, multiple

copies of the central model can be available in distributed

computing devices for training, which eliminates the sin-

gle point of failure. However, both of these two methods

must be managed by one centralized authoritative controlling

agent, which may raise security and privacy concerns. To

address these issues, in our work we develop a decentral-

ized and secure computing paradigm, which does not have

any centralized authoritative controlling agents, by exploiting

blockchain, machine learning, and homomorphic encryption

technologies. Blockchain is an emerging technology, which

can be considered as an immutable and decentralized digital

ledger [11], [12]. A blockchain is a growing list of records,

called blocks, which are linked via cryptography. Each block

contains the hash value of the previous block, the transaction

data, and the timestamp. Due to the inherent cryptographic

chaining, if a malicious party tries to manipulate certain

transaction data, it will causes the changes of the hash values

of the block containing the transaction and those of all the

subsequent blocks, which can be easily detected. Therefore,

generally speaking, blockchain technology provides a very

promising solution for integrity security. Amongst various

existing blockchain platforms, Ethereum and Bitcoin are two

of the most widely adopted ones [11]–[13]. Compared with

Bitcoin, Ethereum platform provides a trustful automation of

programs via smart contracts that run on virtual machines.

In our work, we exploit Ethereum blockchain to execute

ar
X

iv
:1

80
7.

02
51

5v
3

 [
cs

.C
R

]
 4

 S
ep

 2
01

9

2

the secure and privacy-preserving decentralized computing

functionalities automatically.

Furthermore, our computing paradigm enables the effec-

tive decentralized and cooperative learning via an effective

learning-model fusion mechanism. Fusing multiple learning

models is an active area of research and fusion strategies in

literature can be divided into two main categories: (1) Late

fusion that comprise predicting the labels based on the labels

given by each learning model to be fused and (2) Early fusion

that takes the feature vectors given by the individual learning

models as the inputs and learns a classifier on top of them.

Although late fusion requires lower computational cost com-

pared with early fusion in many practical applications as stated

in [14]–[16], early fusion can achieve a more optimal way to

combine learned models compared with late fusion [17]. In

this work, our learning-model fusion mechanism belongs to

the type of early fusion, in which the feature vectors to be

fused present features with the highest level of abstraction.

Additionally, we consider two strategies for designing the

fusion mechanism: (1) using a fully connected structure with

a single hidden-layer to map concatenated features to labels

and (2) implementing gradual fusion to explore the uniqueness

of the individual learning models and the correlation amongst

the learning models.

To further enhance the security and achieve privacy-

preservation, we design a encryption interface with a zero-

knowledge proof protocol by exploiting homomorphic encryp-

tion (HE), which enables evaluating the performance of the

contributed learning models without revealing the sensitive

details of the learning models. HE technology is one form

of encryption that allows the computation operations to be

directly implemented in cipherspace and achieves an encrypted

results that, when decrypted, match the results of the opera-

tions as if they had been performed on the plainspace [18]. The

existing HE technologies can be generally classified into three

main groups: (1) fully HE schemes, (2) partially HE schemes,

and (3) somewhat HE schemes [19]–[25]. Considering the fact

that somewhat HE schemes support more operations compared

with partially HE schemes and require less computation power

compared with fully HE schemes, we exploit Integer-Vector

HE scheme [24], [25], which is a somewhat HE scheme, to

develop the encryption interface in our computing paradigm.

The authors would like to claim that the technologies presented

in this paper has been include in a provisional patent [26].

The next section describes the problem setting for our work.

Section III describes our proposed blockchain-powered decen-

tralized and secure computing paradigm mechanism followed

by the details of the implementation in Section IV. Simulation

results and the conclusions are shown in Sections V and VI,

repectively.

II. PROBLEM SETTING

Two of the main factors for the thriving of machine learning

are: (1) the availability of sizable data-sets with general-

ized distributions, commonly known as big data, and (2)

the availability of the computational power to process this

big data, mainly in the form of large-scale GPU clusters.

Because of this, most profitable parties in the field of machine

learning are large organizations, which hold both valuable

big data and sufficient computational power to process it.

As illustrated in Fig. 1(a), these large organizations collect

data from data contributors to advance the capabilities of their

machine learning techniques. One of the essential challenges

for creating large-scale datasets via data acquisition, from mul-

tiple parties, is the issue of privacy and the related concerns.

Potential data providers may not get motivated to share the

data because of the high potential for data privacy violations.

Additionally, collecting tremendous raw data from multiple

parties results in a huge demand on communication bandwidth

and a dramatically increased attack surface. Furthermore, a

large amount of computational power is required by the central

server to process the collected big data.

One solution is the implementation of distributed learning

architectures [6]–[10]. As shown in Fig. 1(b), in distributed

learning, rather than collecting and processing data in a single

central server, data processing is distributed partially to the

individual data providers. By doing so, the distributed learning

is implemented in such a way, that the computing contribu-

tors process their local data by training the given machine

learning models or their own machine learning models and

then share the trained model with a central controlling agent.

Since the data are not shared, we can say that the data

privacy is preserved in this architecture. Additionally, the

machine learning models are trained in distributed locations

with smaller sets of data, and thus the computational power

required by the individual computing contributors is much

lower, compared with that of a central server. However, in this

solution, the machine learning architecture is fully controlled

by a authoritative agent in a centralized manner. It relies on

the central authority to coordinate the activities of each entity

in the system. Therefore, it is required that the computing

contributors trust the central controlling agent, which may

raise security and privacy concerns.

To mitigate this, we improve the distributed machine

learning architecture presented in Fig. 1(b) and achieve the

decentralized and cooperative machine learning architecture

shown in Fig. 1(c). In a decentralized system, each en-

tity is completely autonomous and responsible for its own

individual behavior. In this architecture, the untrustworthy

computing contributors have full control on their own deep

learning models and private data. Additionally, the individual

contributors are able to participate or leave the computing

architecture, without disturbing the functionality and efficiency

of the overall learning process. Also, the participation of the

computing contributors is motivated by financial compensation

that they will receive according to the value of their contri-

bution. To achieve these objectives, we exploit the Ethereum

blockchain and design the smart contract to secure the peer-

to-peer transactions between the multiple untrustworthy parties

to enable the autonomous decentralized and cooperative deep

learning.

3

Deep
Learning

Algorithms

Private
Data

Private
Model 2

Contributor 2
Private
Data

Private
Model 3

Contributor 3

Private
Data

Private
Model n

Contributor n

Data

Contributor 2

Large
Collections

of Data

Central
Location

Large Scale
Computation

Resources

Data

Contributor 1

Data

Contributor 3

Data

Contributor n

Private
Data

Private
Model 1

Contributor 1

Fusion of Shared Deep
Learning Models

Central Controlling Agent

Private
Data

Private
Model

Contributor 1

Decision
Interface

Private
Data

Private
Model

Contributor 2

Decision
Interface Private

Data

Private
Model

Contributor n

Decision
Interface

Deep
Learning

Task

Decision
Interface

Initiator

(a) (b) (c)

Fig. 1. (a) Centralized machine learning architecture where data are collected to centralized server with high processing and storage capability; (b) Distributed
machine learning architecture where partial of training is distributed to the data contributors and the training process is fully controlled by a central controlling
agent; (c) Autonomous cooperative and decentralized machine learning architecture with no central agents facilitated by blockchain service infrastructure.

Local/
shared
data

Private
Model 1

Computing

Contributor 1

Training and
testing dataset

submitted to DS

Application Initiator

Decision
interface

Decision
Interface

Local/
shared
data

Private
Model N

Decision
Interface

Testing data revealed
from decentralized

storage (DS)

Verification Contributor 1

Decision
Interface

Testing data
revealed
from DS

Quantitative
verification

Verification

Contributor M

Decision
Interface

Task-driven
functions defined

via blockchain
smart contract

MetaModel

Private
Model 1

Private
Model 2

Private
Model n

Encryption
Interface

Encryption
interface

Encryption
InterfaceObjectives/constraints

published by Initiator
via blockchain smart

contract

Objectives/constraints
published by Initiator
via blockchain smart

contract

Computing

Contributor N

Quantitative
verification

Training data obtained
from DS

Training data obtained
from DS

Fig. 2. Overview of our blockchain-powered decentralized and secure
computing paradigm.

III. PROPOSED BLOCKCHAIN-EMPOWERED COOPERATIVE

MACHINE LEARNING PLATFORM

The overview of our proposed blockchain-powered decen-

tralized and decentralized computing paradigm is illustrated

in Fig. 2. As shown in Fig. 2, our proposed mechanism

is designed to enable the effective cooperation between the

available and possibly scattered computing nodes to accom-

plish data-driven task that may require high computing power

and intelligent and large dataset. The individual computing

nodes can participate the computing paradigm by playing one

of the three roles: (1) application initiators, (2) computing

contributors, or (3) verification contributors. As detailed in

Fig. 3(a), if the computing node act as an application initiator,

it announces the data-driven applications and is responsible

for defining the computing tasks, such as the objectives,

constraints, the suggestions on the computing model structure,

and the financial compensation commitments, via blockchain

smart contract. The application initiators also provide the

verification contributors with a sample set of data to evaluate

the performance of the learning models contributed by the

computing contributors. If it is necessary, the application

contributors also provide the computing contributors, which

have computing power and computing intelligence, with the

dataset to conduct the local training. The sharing of the

dataset is realized via the decentralized storage (DS) such

as The Interplanetary File System (IPFS) [27]. As shown

in Fig. 3(b), the computing contributors train the machine-

learning models locally for a given data-driven task by using

a certain local data asset or the data shared by the associated

application initiator. After training the local learning model

successfully according to the criteria defined by the application

initiator via smart contract, such as the accuracy is above

90 %, the computing contributors announce the completeness

of the training via the blockchain platform and share the

achieved the machine-learning model to the randomly selected

verification contributors via the DS such as IPFS. The available

verification contributors are passively and randomly selected

to provide the hardware resources and verify the contributions

of the locally trained learning models, which are claimed by

the computing contributors, in a random and decentralized

manner. As illustrated in Fig. 3(c), the verification is conducted

according to the criteria defined by the application initiator

via smart contract, such as whether the accuracy can be

improved after fusing the claimed model. The majority voting

amongst the verification contributors is used to determine the

contribution of the corresponding computing contributors. The

application initiator is informed about the majority voting

conclusion. If this conclusion is positive, the transaction of the

verified locally-trained machine-learning model, also called

private model, is established between the application initiator

and the associated computing contributor, in which the com-

puting contributor receives the financial compensation and the

application initiator obtains the access to the learning model

in IPFS. Additionally, the verification contributors involved in

the task also get compensated from initiators for their effort.

After the time window assigned to the data-driven task ends,

4

Start

Generate

Private/Public Key

Download Verified

Encrypted Private

Models from IPFS

Done

Decrypt Models using

Secret Key

Share Public Key

and Data (IPFS)

Publish Task via

Blockchain Smart

Contract

Fuse the Models and

Achieve MetaModel

Verified Models?

Yes

No

Start

Training

Model

Achieve

Accuracy(90%)

?

No Yes

Upload to

IPFS

Success?

YesNo

Done

Output

Model Name & Hash

Encryption

Receive Data and

Public Key

Merge New

Training Model

Increase

Accuracy?

No

Done

Output

Verified Model Name

and Hash Value

Download Models from

IPFS

Success?

Yes

No

Yes

Start

Receive Data and

Public Key

(a) (b) (c)

Fig. 3. The schematic diagram showing workflows for (a) application
initiators, (b) computing contributors, and (c) verification contributors.

the application initiator fuses all the received verified private

models to achieve the MetaModel that will be applied to

address the data-driven task. The architecture of our proposed

computing paradigm is considered asynchronous and adaptive

since the computing and verification contributors can leave or

join the task at their convenience.

IV. IMPLEMENTATION OF PROPOSED COMPUTING

PARADIGM

In this section, we described the implementation of our pro-

posed blockchain-powered decentralized and secure comput-

ing paradigm in details. The implementation of our proposed

computing paradigm comprises of three layers: (1) application

layer to conduct decentralized and secure computing, also

called computing layer, (2) blockchain middleware to enable

the secure peer-to-peer communications between the comput-

ing nodes including the transactions of the private models and

the data sharing, and (3) software-defined networking (SDN)-

enabled networking layer.

A. Decentralized Storage System

As shown in Fig. 2, decentralized storage (DS) system is

one essential component of the computing layer to secure

the sharing of data and private machine-learning models. DS

system makes the access these data and learning models more

affordable, faster and safer. Firstly, expensive centralized data

servers are no longer needed in a DS system because every

peer can cache the data required by other peers. Secondly,

optimized downloading from multiple local peers provides

higher traffic throughput than that from a remote centralized

data server. In addition, as shown in Fig. 3, after the data

or private models are stored in the DS system, the unique

hashes characterizing the fingerprint of these cyber assets are

generated and shared, which ensures the integrity and the

authorization of the sharing process.

B. Blockchain Middleware

Ethereum Blockchain-based middleware is designed to

automatically control, manage and secure the system pro-

cesses. First of all, consensus protocol, such as Proof-of-Work

(PoW), Proof-of-Stake (PoS), and Proof-of-Authority (PoA)

of blockchain provides an unsupervised secure environment

where the authoritative agents are not necessary any more

for the decentralized computing. Additionally, the distributed

database of blockchain provides a shared, irremovable ledge

of any events happened in time order on the system. It is

convenient to trace the ins and outs of a event on blockchain

ledge. Furthermore, blockchain smart contract enables the

automation of system processes including the training, veri-

fication, transaction, and fusion processes of the decentralized

and cooperative learning.

C. Homomorphic Encryption Interface

As shown in Fig. 4, the encryption interface is designed to

enhance the security and enable the privacy-preservation of our

computing paradigm. In this work, the encryption interface is

developed by exploiting Integer Vector Homomorphic Encryp-

tion (HE) scheme. Figure 4 illustrates the overall mechanism

of the encryption interface, which mainly consist of eight

steps. Step 1: Encryption interface client of the application

initiator generates the public key M and the secret key S′

according to Integer Vector HE scheme, which is illustrated

in Fig. 3(a). Step 2: The generated public key M is shared

amongst the active computing and verification contributors,

which is illustrated in Figs. 3(a)-(c). Steps 3 and 4: Computing

contributors apply the received public key M to encrypt the

machine learning models achieved locally and share the en-

crypted private models with the passively selected verification

contributors for quantitative verification, which is illustrated

in Fig. 3(b). Step 5: After receiving the encrypted private

model, the verification contributors verify the performance of

the private models by conducting the quantitative verification

in cipherspace with the public key M. In the quantitative

verification, the verification contributor fuses the received

private model with the existing learning model in cipherspace

and concludes that the private model is valuable if the overall

accuracy increases after model fusion. Step 6: The majority

voting amongst all the associated verification contributors is

used to determine the contribution of the private model. The

application initiator is informed about the majority voting

conclusion. Step 7: If the majority conclusion is positive,

the transaction of the encrypted private model between the

associated computing contributor and the application initiator

is established. At last, the application initiator decrypts the

shared model with the secret key S′.

5

Application

Initiator

Computing

Contributors

Verification

Contributors

1. Generate public key

 and secret key !

2. Send

2. Send

3. Encrypt local training

model with

4. Send

encrypted

model

5. Verify the shared

encrypted model with

local data and

6. Inform decision

7. Transaction of the

encrypted model if

approved

8.

Decrypted

model with

 !

Fig. 4. The illustration of the mechanism of our encryption interface.

1) Integer-Vector Homomorphic Encryption: In our work,

the integer-vector homomorphic encryption scheme, which

supports three fundamental operations: addition, linear trans-

formation, and weighted inner products, is exploited to develop

the encryption interface. Letting x ∈ Z
m be the plaintext

vector, S ∈ Z
m×n be the secret key, and c ∈ Z

n be the

ciphertext vector, the encryption can be formulated as:

Sc = wx+ e (1)

wheree is a randomization term introduced to enable the

encryption, which have elements smaller than w, and w is

a large integer that controls the appropriate ratio between the

plaintext and the introduced randomization.

Given the secret key S, the decryption can be performed

as:

x = ⌈
Sc

w
⌋ (2)

In this homomorphic encryption scheme, key switching

method was proposed to convert the ciphertext in one ci-

pherspace to another without decryption. This convert is

realized via a public key M that is calculated as follows:

M =

[

S∗ −TA+E

A

]

(3)

where S and c are the original secret key and ciphertext, re-

spectively, S∗ is an intermediate key satisfying S∗c∗ = Sc, c∗

is the representation of c with each digit of c, ci represented as

a l-bit binary number, and A and E are random and bounded

matrices, respectively. A scalar l is selected to be large enough

such that |c| < 2l, which determines the maximum value of c

represented with l bits. Let bi be the bit representation of the

value ci, we can obtain c∗ as follows,

c∗ = [bi,bi+1, ...,bn] (4)

where n is the length of vector c. Similarly, S∗ can be obtained

as follows:

Bij =
[

2l−1Sij , ..., 2Sij , Sij

]

(5)

where Bij is the sub-vector of S∗ that corresponds to the

element Sij .

Additionally, since the initial secret key S is a identity

matrix of the dimension n × n , the original ciphertext c is

actually the original plaintext x itself. Let S′ = [I,T], where I

is identity matrix and T, is a desired secret vector. By using the

public key M defined in Eq. (3), the ciphertext corresponding

to the desired secret key S′ can be calculated as:

c′ = Mc∗ (6)

where M is a (n+ 1)× nl dimension matrix. Therefore, the

resulting ciphertext c′ is a integer vector with length n+ 1.

2) Implementation of Artificial Neural Networks-based Ma-

chine Learning Model in Cipherspace: As shown in Fig. 4,

the essential component of our homomorphic encryption is to

implement the artificial neural network (ANN)-based machine

learning model in cipherspace by using integer-vector ho-

momorphic encryption (IVHE) scheme. ANN implementation

mainly comprises of summation, vector addition, vector mul-

tiplication with scalar, vector dot product, pooling operations,

convolution operations, and nonlinear activation functions.

Most of these operations are supported by the IVHE scheme,

except pooling operations, convolution operations, and non-

linear activation function realizations. To enable the imple-

mentation of pooling operations in cipherspace, we currently

assume the computing contributors adopt the average pooling

or summation pooling for training their machine learning

model locally. Under this assumption, the pool operations can

be realized via the summation followed by a division by a

integer, which is supported by the IVHE. The convolution

operations can be implemented in cipherspace by calculating

the vector multiplication operations. Additionally, we mainly

consider two types of activation functions in the current work:

sigmoid function, σ(x) = 1/(1 + e−x), and ReLU function,

ReLU(x) = max(0, x). To implement the sigmoid func-

tions in cipherspace, we leverage the Taylor series expansion

to achieve the k-th order polynomial approximation of the

sigmoid function. For example, if k = 3, the polynomial

approximation is σ̄ =
1

2
+

x

4
−

x3

348
that is supported by the

IVHE scheme. To enable the implementation of ReLU func-

tion, which is a piecewise linear operation with discontinuity

at x = 0, in cipherspace, we currently constrain the secret

and public keys to contain the non-negative elements only. By

doing so, there is no sign changes while encrypting. The ReLU

function is executed in cipherspace via the random dropout.

There still remain two challenges of implementing the

ANN-based machine learning model in cipherspace. First,

most weight values and input data for ANNs are floating-point

values that cannot directly be supported by our adopted homo-

morphic encryption scheme. Additionally, implementing the

average pooling and calculating the polynomial approximation

of sigmoid function require the multiplications with floating-

point numbers, which is also not supported by our adopted

homomorphic encryption scheme. To address this issue, we

introduce predetermined and unified scaling factors to convert

the floating-poitn values to integers. A final propagated scaling

factor is used to scale down the output values of the ANNs

to the original values. Second, as discussed in Section IV-C1,

inter-vector homomorphic encryption increases the length of

ciphertext vector by 1 compared with that of the plaintext

vector. This difference between the dimensions of the cipher-

text and plaintext raises challenges in implementing the ANN

6

operations that requires consistency in dimensions such as

feed-forward operations. To address this issue, we develop two

encryption strategies as follows:

a) Element-wise Encryption Strategy: The essential idea

of our element-wise encryption strategy is to encrypt the

matrices and vectors in a manner of element by element. By

doing so, the additional components introduced by the homo-

morphic encryption can be addressed in the third dimension,

which ensures the consistency on the original dimensions. To

illustrate our strategy, we use a fully-connected neural network

(NN) as an example shown in Fig. 5(a). The details of the

implementation of the fully-connected NN in cipherspace are

illustrated in Fig. 5(b).

As shown in Fig 5(a), the fully-connected ANN has an input

vectors with length of n, a weight matrix, Weight Matrix 1,

with the dimension of n × m resulting in a hidden layer of

size m adopting sigmoid function as the activation function,

a weight matrix, Weight Matrix 2, with dimension m × k,

and a output vector of length k. To enable the implantation

of our element-wise encryption strategy, Weight Matrices

1 and 2 are represented with dimensions n × m × 1 and

n × k × 1, respectively, and multiplied with a scaling factor

p to ensure all the matrix elements to be integer. Another

scaling factor q is introduced to convert the input elements

to be integer. Considering the fact that, if Weight Matrix

is encrypted, the following structure of the fully-connected

NN is meaningless for a malicious party, it is reasonable

to focus on encrypting Weight Matrix 1 only to achieve a

tradeoff between the high security and low computational

complexity. As shown in Figs. 5(a) and (b), we consider

each element of Weight Matrix 1 as a vector with length 1
in the 3rd dimension, and apply the element-wise encryption

strategy, which results in a weight matrix with the dimension

of n×m×2 in cipherspace. The dot product operation between

the scaled and encrypted Weight Matrix 1 and the scaled input

vectors is executed by using IVHE, which results in a pair of

weighted inputs in cipherspace. By achieving a polynomial

approximation of the sigmoid activation function, the hidden

layer with the approximated sigmoid functions is encrypted

via the homomorphic encryption resulting in a hidden layer

pair in cipherspace. For each of the encrypted hidden layer

in the pair, a dot product operation is performed with the

scaled Weight Matrix 2, which results in an output pair in

cipherspace. Additionally, as shown in Fig 5(b), a scaling-

down operation is required during the decryption conducted

in the encryption interface in application initiator.

Figure 5(c) illustrates the implementation of our element-

wise encryption strategy to execute a convolutional neural net-

work (CNN). Similar to the previous example, the convolution

filter is converted to a pair of scaled and encrypted filters

having the dimension of m × r. A dot product operation is

performed on each encrypted convolution filter of the pair

with the scaled input vector. Then a pair of hidden layers

in cipherspace is achieved by implementing ReLU operations,

sum-pooling, and reshaping. Another dot product operation

is executed on each of the hidden layer in the pair with the

scaled Weight Matrix 2, which results in an output pair in

cipherspace. Since, in this example structure, the encrypted

ReLU activation function is realized via random dropout and

the operations of sum-pooling and reshaping are executed in

cipherspace using IVHE scheme, no additional scaling is in-

troduced through these operations. Therefore, the final output

scaling factor remains lower compared to the previous example

fully-connected NN using sigmoid activation function.

b) Matrix-Pair-wise Encryption Strategy: Our matrix-

pair-wise encryption strategy is performed on a pair of neigh-

boring weight matrices. To illustrate our strategy, we use a

CNN as an example shown in Fig. 6. As illustrated in Fig. 6,

this CNN has two convolution layers having the dimensions

of m×1×r and m×r×l, respectively, where r is the number

of convolution filters in the first convolutional layer and l is

the number of convolution filters in the second convolutional

layer.

In our encryption strategy, the dimension of encryption is

carefully selected such that there is no dimension mismatch

while executing the CNN-based machine learning model in

cipherspace. Additionally, the first convolution layer is en-

crypted via IVHE scheme by leveraging the 3rd dimension,

which results in a scaled and encrypted convolutional filter

with dimension m × 1 × (r + 1). Similarly, the second

convolution layer is encrypted on the 2nd dimension, which

results in a scaled and encrypted convolutional filter with

dimension m × (r + 1) × l. By doing so, the convolution

operation can be performed as a pair without any dimension

mismatch.

D. Learning-Model Fusion Mechanism

As illustrated in Fig. 2, the success of our decentralized

and secure computing paradigm requires an efficient learning-

model fusion mechanism, with which the application initiator

is able to integrate the verified private models and achieve

an effective MetaModal for the targeted data-driven task.

For designing the learning-model fusion mechanism, it is

necessary to treat the computing models, provided by the

computing contributors, as separate entities, to ensure the

fused structure is dynamic.

Figure 7 illustrates the structure of our proposed fusion

mechanism. In our mechanism, the upper-layer feature vectors

fi from individual verified private models are concatenated to

form a concatenated feature layer fc. As shown in 7, the upper-

layer feature vector fi can be the input of the output layer for

the private model i. One fully-connected neural network (NN)

is designed to fuse the features characterized by the individual

private models. This fully-connected NN uses the concatenated

feature layer fc as its input layer and has a hidden layer h with

the length of
∑n

i=1
| li |, where | li | is the number of the

labeled classes in the ith private model. TO design the fully-

connected NN, it is essential to design its weight matrices A

and B. Currently, we consider two strategies for learning the

optimum values for weight matrices A and B and designing

the learning-model fusion mechanism.

1) Strategy I: In this strategy, the weight matrices A and B

are initialized randomly without any additional constraints and

are optimized via the backpropagation algorithm [28] in which

7

Input !

Weight Matrix 1

 ! !

Aprx. Sigmoid

Weight Matrix 2

! " !

Output " !

Hidden Layer ! !

Input !

Scaled Cipherspace

Weight Matrix 1

 ! "

Cipher Aprx. Sigmoid

Scaled

Weight Matrix 2

! " !

Output " "

Hidden Layer ! "

Scaling

Scaling

Scaling

Encryption

Plainspace Model Cipherspace Model
Model

Encryption

Input !

Scaled Cipher

Weight Matrix 1

 ! !

g 1 g 2

Cipher Aprx. Sigmoid

Weighted

Input Pair

Hidden

Layer Pair

Scaled

Weight Matrix 2

! " "

Output 1 Output 2

Output Pair

Decryption and Scaling

SF= 1/(p4q3102)

SF = q

SF = p

SF = pq

SF = p3q3102

SF = p4q3102

Plaintext Output

Scaled

Weight Matrix 2

! " "

h 1 h 2

Output	Pair SF	=	2p2q

Scaled	Cipher
Filter	
m × r

Scaled	Weight	Matrix	2
× k

nr

2

Output	1

h1

1D	Convolution	

Dense	Neural	Layer

1D	Convolution	

Average	Pooling

h2

SF	=	q

SF	=	pSF	=	p

Hidden	
Layer	Pair

Scaled	Weight	Matrix	2
× k

nr

2

Output	2

Dense	Neural	Layer

Decryption	and	Scaling
SF=	1/(2p2q)

Plaintext	Output	k × 1

Reshaping

Cipher	ReLU

Scaled	Cipher
Filter	
m × r

Input	n × 1

SF	=	2pq

(a) (b) (c)

Fig. 5. The illustration of our element-wise encryption strategy: (a) using a fully-connected NN as an example, (b) detailing the execution of the fully-connected
NN in cipherspace, and (c) using a CNN as an example.

Input	n × 1

Average	Pooling

Output	k × 1

1D	Convolution	

ReLU

Dense	Neural	Layer

× 1

nl

2

× k

nl

2

m × 1 × r

1D	Convolution	

ReLU

m × r × l

× r

n

2

Input	n × 1

Scaled	Cipher	Filter	1

Average	Pooling

Cipher	Output	
k × 2

1D	Convolution	

ReLU

Dense	Neural	Layer

× 2

nl

2

× k

nl

2

m × 1 × (r + 1)

1D	Convolution	

ReLU

m × (r + 1) × l

× (r + 1)

n

2

Weight	Matrix

Hidden	Layer	2	

Filter	2	

Hidden	Layer	1	

Filter	1	

Hidden	Layer	1	

Scaled	Cipher	Filter	2

Hidden	Layer	2	

Scaled	Weight
Matrix

× k

nl

2

Scaled	Weight
Matrix

(a) (b)

Fig. 6. Illustration of our matrix-pair-wise encryption strategy: (a) a CNN-
based machine learning model in plainspace and (b) the corresponding CNN-
based machine learning model in ciperspace.

the ith element in the hidden layer h and the jth element in

the output layer y are calculated as follows:

hj =

|fc|
∑

i=1

AT
ij · fci (7)

yj =
exp(

∑|h|
i=1

BT
ij · hi)

∑d
k=1

exp(
∑|h|

i=1
BT

ik · hi)
(8)

2) Strategy II: This strategy is developed to achieve to

goals: (1)learning the uniqueness of the features characterized

by the individual verified private models, and (2) exploring the

correlation amongst the features presented by the individual

private models. To achieve this goal, a gradual fusion is

designed, in which the weight matrix A is initialized as a

concatenated matrix formulated in Eq. (9) and the weight

matrix B is initialized with the concatenation of the identity

matrices, as formulated in Eq. (10).

Ainit =















W1 0 0 . . . 0

0 W2 0 . . . 0

0 0 W3 . . . 0
...

...
...

. . .
...

0 0 0 . . . Wn















(9)

where a diagonal weight matrix Wi, which has the dimension

of (| fi |, | li |), is initialized randomly.

Binit =



































































w111 = 1 0 0 . . . 0
0 w122 = 1 0 . . . 0
0 0 w133 = 1 . . . 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 . . . w1dd = 1
w211 = 1 0 0 . . . 0

0 w222 = 1 0 . . . 0
0 0 w233 = 1 . . . 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 . . . w2dd = 1
.
.
.

.

.

.
.
.
.

. . .
.
.
.

wn11 = 1 0 0 . . . 0
0 wn22 = 1 0 . . . 0
0 0 wn33 = 1 . . . 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 . . . wndd = 1



































































(10)

where n is the number of the verified private models to be

fused and d denotes the number of class labels.

The elements of the weight matrices A and B are optimized

by using our gradual fusion method that consists of two stages.

In the initial stage, only the diagonal non-zeros weights of

matrix A by using backpropagation algorithm, which targets

at learning the uniqueness of the features characterized by

the individual private models. In the second stage, all of the

weights in A are updated by using backpropagation algorithm,

which targets at exploring the correlations between the features

8

Verified

Local

Learning

Model 1

Verified

Local

Learning

Model 2

Verified

Local

Learning

Model n

f1

f2

fn

l1

l2

ln

fc

Weight

Matrix

A

h

Weight

Matrix

B

y

Concatenated

 Features

Hidden

Layer

Data

Analysis

Results

Private/

Shared

Data 1

Private/

Shared

Data 2

Private/

Shared

Data n

Fig. 7. Illustration of our proposed learning-model fusion mechanism.

characterized by the individual private models. Accordingly,

the ith element in the hidden layer h and the jth element in

the output layer y are calculated as follows:

hj =

|fc|
∑

i=1,Aij∈W̄

AT
ij · fci + γ

|fc|
∑

i=1,Aij /∈W̄

AT
ij · fci (11)

where the parameter γ is set as 0 in the intial stage and as 1
in the final stage, W̄ = Wp ←

∑p−1

k=1
| lk |< i ≤

∑p

k=1
| lk |.

yj =
exp(

∑|h|
i=1,Bij=wjpp

BT
ij · hi + γ

∑|h|
i=1,Bij 6=wjpp

BT
ij · hi))

∑d
k=1

exp(
∑|h|

i=1,Bik=wipp
BT

ik
· hi + γ

∑|h|
i=1,Bik 6=wipp

BT
ik
· hi)

(12)

where p ∈ {1, 2, 3 . . . , d}, and d is the number of labeled

classes.

V. SIMULATION RESULTS

In this section, the performance of our proposed blockchain-

powered decentralized and secure computing paradigm is

evaluated by considering three case studies. To achieve this

goal, we develop a Blockchain-powered Software-defined net-

working (SDN)-based testbed as detailed in Section V-A.

A. Blockchain-Powered SDN-Based Testbed

Fig. 8 (a) shows a picture of our Blockchain-powered

SDN-based testbed, in which the computing nodes, including

one application initiators, three computing contributors, and

three verification contributors, are simulated by using two

popular embedded systems, Raspberry PI and NVIDIA Jetson.

The communications and cooperative computing amongst the

computing nodes are supported by the blockchain middleware

and the SDN-based peer-to-peer networking layer. The integra-

tion of the computing layer, blockchain middleware, and the

SDN-enabled networking layer in our computing testbed are

illustrated in Fig. 9. Each computing node, which is simulated

via Raspberry PI or NVIDIA Jetson, has (1) one or multiple

blockchain clients to interact with the blockchain middleware,

(2) multiple ethernet ports to interact with the SDN-enabled

networking layer, and (3) one or more decentralized storage

(DS) clients to enable the decentralized storage systems.

In our testbed, the blockchain middleware is developed by

exploiting a decentralized application (DApp) on the Ethereum

platform in which the engine and language of smart contract

were Ethereum Virtual Machine (EVM) and Solidity. The

consensus protocol is set to be Proof-of-Authority (PoA). The

block interval is set to 15 s and all sealers are initialized with

a small number of tokens. Additionally, the smart contract in

Ethereum is written by Solidity and the blockchain event lis-

tener client is leveraged to provide the interface of the logging

facilities of the Ethereum virtual machine. Every computing

node, which is willing to participate in a certain decentralized

computing task via the blockchain smart contract, is required

to send a transaction through Ethereum blockchain to contract

with a considerate amount of security deposit of tokens. By

doing so, the smart contract is able to record the identities of

all the participants and forward the tasks such as training and

verification to the participants appropriately. The deployment

of smart contract is considered as a transaction as well, which

provides the other nodes with the address necessary to access

the smart contract. As shown in Fig 9, the DS system in

our testbed is realized by using Interplanetary File System

(IPFS) that utilizes the peer-to-peer network to share and

store hypermedia on the Internet. Since the whole simulation

was running on a private network, a shared swarm key was

used to authorize reliable nodes to join IPFS. Furthermore,

our computing layer is developed in Python because most

frameworks of machine learning are realized there. Web3.py

and ipfs-api.py provide access to Ethereum blockchain and

IPFS clients to realize the transactions and file sharing, respec-

tively. Tensorflow is a deep learning framework with Python

bindings, which is adopted for the task of machine learning

in our testbed.

To further demonstrate our testbed, the screenshot of the

terminals for a computing initiator, a computing contributor,

and a verification contributor during one experiment are shown

in Figs. 8(b)-(d), respectively. As shown in Fig. 8(b), the ap-

plication initiator’s operation comprises three main processes

that are identified with three red rectangular boxes: (1) being

9

initialized to publish one data-driven task, characterize the

objectives and constraints of the task via smart contract, upload

the data to be shared to IPFS, and share the public key

generated via homomorphic encryption interface, (2) receiving

the verified models that are concluded according to the ma-

jority votes of all the active verification contributors, and (3)

implementing decryption and fusion on the received verified

models. As shown in Fig. 8(c), the computing contributor’s

operation mainly consists of four processes: (1) participating

the data-driven task, (2) terminating the training task when the

accuracy meets the given/self-defined criterion, (3) encrypting

the achieved private model via homomorphic encryption inter-

face and uploading the encrypted private model to IPFS, and

(4) announcing the encrypted private model for assessment. As

shown in Fig. 8(d), the verification contributor’s operation in-

cludes three main processes: (1) being passively and randomly

selected and initialized for the given data-driven task, (2)

receiving the all announced private models, and (3) verifying

the received private models according to the criterion defined

in smart contract and publishing the verification results.

B. Case Study I

In this case study, we focus on evaluating the performance

of our proposed blockchain-powered decentralized and secure

computing paradigm in a secure environment. In other words,

the functionality of the homomorphic encryption interface is

not considered. We assume one application initiator publishes

a data-driven task on classifying the 10 image classes provided

by the MNIST handwritten digit database [29] and three

computing contributors, and three verification contributors,

which are considered to be randomly selected, participate in

the task. We consider that each computing contributor develops

its own CNN-based machine learning model whose structure

parameters are summarized in Table I. As shown in Table II,

the local data available to each computing contributor only

present a partial view of the whole dataset. The accuracy

of the CNN models developed by the individual computing

contributors for classifying their local verification data is

shown in Fig. 10, all of which are above 90 %. In this sce-

nario, the criterion of determining whether the local learning

model is trained successfully is achieving the accuracy of

90 %. Therefore, all of the three private CNN models are

encrypted and published to the three verification contributors

for assessment. After receiving the verified private models

according to the majority voting amongst the verification

contributors, the application initiator fuses the models by using

the two strategies introduced in Section IV-D to achieve the

MetaModal. Assume that the application initiator decrypts

and fuses the private models as soon as receiving them, the

classification accuracy achieved by the MetaModal is shown in

Fig. 11. From Fig. 11, it is clear that the classification accuracy

increases as more private models are fused. This is reasonable

since the individual private models are achieved using the local

data that only characterize the partial features of the whole

dataset. Furthermore, it can also see from Fig. 11 that Fusion

Strategy II slightly outperforms the Fusion Strategy I when

fusing multiple private models.

C. Case Study II

In this case study, we focus on evaluating the performance

of homomorphic encryption interface in our proposed decen-

tralized and secure computing paradigm by using the testbed

shown in Figs. 8 (a) and 9. The local data that can be accessed

by the individual computing contributors are detailed in Ta-

ble III, which show that the individual computing contributors

only have partial view of the entire dataset. Additionally, we

assume that each computing contributor locally trains a CNN

private learning model with a similar structure as illustrated in

Table IV. To perform our homomorphic encryption interface,

the floating-point input data and weight parameters of the

CNN-based learning models are converted to be integer by

introducing appropriate scaling factors p and q as shown in

Fig 5. In this simulation, we evaluate the performance of the

final MetaModal when the computing contributors select the

scaling factors p = 25 or 27 and q = 1000. Furthermore,

we assume that in the encryption interface of the comput-

ing contributors, the private CNN-based learning models are

encrypted via the first convolution layers. In the encryption

interface of the application initiators, the verified private

models are decrypted and fused to achieve MetaModals via

Fusion Strategy II. The accuracy of the MetaModal achieved

with and without homomorphic encryption interface are shown

in Table V, respectively. From Table V, we can see the

MetaModal achieved by using the encryption interface with

the scaling factor p = 27 outperforms that with the scaling

factor p = 25 and achieves comparable accuracy as the original

MetaModal. This is reasonable because that the errors caused

by rounding the parameters of the CNN-based private models

to integers increases when the scaling factor is lower.

D. Case Study III

In this case study, we compare our proposed computing

paradigm to a widely recognized distributed machine learning

paradigm, federated learning [30] in a data-driven task on

classifying the 10 image classes provided by the MNIST

handwritten digit database [29]. In federated learning, the local

contributors initialize their model by referring the global ini-

tialized weights and then update their own models for a certain

numbers of local epochs. The weights of the local models

are averaged as the new global weights, which completes the

first round of model update. The updated global weights are

distributed to local computation contributors for a next round

of model updating procedure. This process is called Federated

Averaging (FedAvg).

To achieve a fair comparison, we assume the decentralized

computing is conducted in a secure environment. Therefore,

in our computing paradigm, the functionality of our homo-

morphic encryption interface is not considered and only one

verification contributor is needed. For federated learning, we

assume that the global average process ignores the random

selection of local weights and collect all the weights achieved

by the available local models. In addition, we assume that each

computing contributor adopts a three-layer CNN model in both

of the computing paradigms. In our computing paradigm, there

are three computing contributors, each of which conducts up to

10

(a)

[1]

[2]

[3]

(c)

(b)

(d)

[1]

[2]

[3]

[4]

[1]

[3]

[2]

Fig. 8. (a) A picture of the testbed, and the terminals of (b) Application Initiator, (c) Computing Contributor, and (d) Verification Contributor.

100 training epoches locally, one verification contributor, and

one application initiator. In federated learning, there are four

local contributors training the local models, each of which

involves in five rounds of model updating and conducts 20
training epoches locally in each round.

Furthermore, in this case study, we consider two scenarios.

In the first scenario, we consider a diverse set of local training

samples of the MNIST data available to the local contributors.

Each of these local training samples includes the data associ-

ated with all of the 10 image class labels, and the distribution

of the local training samples are not identical amongst these

contributors. In the second scenario, we consider that data are

distributed amongst contributors in a way that only part of the

10 image classes are available to most of the contributors. The

data distribution used in this scenario is similar to Table II.

The comparison result is shown in Fig. 12, from which

11

Raspberry Pi 3/

Nvidia Jetson

TX2Blockchain

Client

IPFS Client

Ethernet

Raspberry Pi 3

Open vSwitch

Raspberry Pi 3

RYU Controller

Linux Bridge

50 ms

5 ms

Physical Data Link
Physical Control Link

Logical Link of Blockchain
Logical Link of IPFS

5 ms

Raspberry Pi 3

RYU Controller

Linux Bridge

Raspberry Pi 3

Open vSwitch

Raspberry Pi 3

Open vSwitch

Raspberry Pi 3

Open vSwitch

Raspberry Pi 3/

Nvidia Jetson

TX2Blockchain

Client

IPFS Client

Ethernet

Raspberry Pi 3/

Nvidia Jetson

TX2Blockchain

Client

IPFS Client

Ethernet

Raspberry Pi 3/

Nvidia Jetson

TX2Blockchain

Client

IPFS Client

Ethernet

Raspberry Pi 3/

Nvidia Jetson

TX2Blockchain

Client

IPFS Client

Ethernet

Raspberry Pi 3/

Nvidia Jetson

TX2Blockchain

Client

IPFS Client

Ethernet

Raspberry Pi 3/

Nvidia Jetson

TX2Blockchain

Client

IPFS Client

Ethernet

50 ms

5 ms

5 ms
10 ms

5 ms 5 ms 5 ms

10 ms

Fig. 9. (a) Illustration of implementing our blockchain-powered and SDN-based decentralized and secure computing testbed.

TABLE I
PARAMETERS OF THE LOCAL LEARNING MODELS CONSIDERED IN CASE STUDY I

CNN parameters

Computing Computing Computing
Contributor 1 Contributor 2 Contributor 3

Inputs 28x28 images

Convolution layer l 32 5x5 kernels 64 5x5 kernels 32 5x5 kernels

Pooling layer 1
2x2

maximum pooling
2x2

maximum pooling
2x2

maximum pooling

Convolution layer 2 16 5x5 kernels 32 5x5 kernels 32 10x10 kernels

Pooling layer 2
2x2

maximum pooling
2x2

maximum pooling
2x2

maximum pooling

Convolution layer 3 8 2x2 kernels 16 2x2 kernels 16 4x4 kernels

Reshaped vector
(Convolution layer 3 output

are flatten as a vector of size)
7x7x8=392 7x7x16=784 7x7x16=784

hidden layer Fully connected hidden layer with size 500

Output 10 labels with softmax activation

Training method Adam Optimizer
Batch size 50

Learning rate 0.0001
Maximum number of epochs 100

it can be seen that both computing paradigms achieve a

comparable classification accuracy. In the first scenario where

all the contributors have a good view of the entire dataset,

federated learning slightly outperforms our framework. In the

second scenario, where most contributors only have partial

views of the entire dataset, our computing solution is slightly

better than the federated learning. Furthermore, our computing

solution provides higher integrity security via removing the

authoritative controlling agent and introducing the verification

contributors. The main functionality of verification contribu-

tors is for security purpose rather than for increasing the final

accuracy, which also results in the relatively lower accuracy

achieved by our solution in the first scenario shown in Fig. 12.

Furthermore, the communication cost required by federated

learning is higher than that required by our solution. This

is caused by the centralized management and the repeated

12

TABLE II
SUMMARY OF THE DATASET AVAILABLE TO THE INDIVIDUAL

CONTRIBUTORS IN CASE STUDY I

Contributor
Set of

Labels

No.

Training

Data

No.

Verification

Data

Verifiers
{0, 1, 2, 3, 4,

5, 6, 7, 8, 9}
1000 1000

Computing

Contributor 1
{0, 1, 2, 3, 4} 1000 1000

Computing

Contributor 2
{0, 6, 7, 8, 9} 1000 1000

Computing

Contributor 3
{5, 6, 7, 8, 9} 1000 1000

1 2 3
Index of the Computing Contributor

90

92

94

96

98

100

C
la

ss
if

ic
at

io
n

A
cc

cu
ra

cy
 o

n
Pr

iv
at

e
V

er
if

ic
at

io
n

D
at

a
(%

)

Fig. 10. Accuracy obtained by each computing contributor by using their
local verification data.

{1} {1, 2} {1, 2, 3}
Indices of the Computing Contributors Contributing for the MetaModal

80

85

90

95

100

C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y
O

bt
ai

ne
d

by
 M

et
aM

od
al

 (
%

)

Strategy I
Strategy II

Fig. 11. Comparison of average classification accuracy obtained by Meta-
Modal using strategies I and II versus the indices of the computing contributors
contributing to the MetalModal.

collection of the local weights during the process FedAvg.

E. Case Study IV

In this case study, we evaluate the performance of our

decentralized and secure computing paradigm with the func-

tionality of the homomorphic encryption interface in a data-

TABLE III
SUMMARY OF THE LOCAL DATA AVAILABLE TO THE INDIVIDUAL

CONTRIBUTORS IN CASE STUDY II

Contributor
Set of

Labels

No.

Training

Data

No.

Verification

Data

Computing

Contributor 1
{0, 1, 2, 3, 4, 5, 6} 1000 1000

Computing

Contributor 2
{0, 1, 2, 3, 4, 8, 9} 1000 1000

Computing

Contributor 3
{0, 1, 2, 6, 7, 8, 9} 1000 1000

TABLE IV
PARAMETERS OF THE CNN-BASED PRIVATE MODELS IN CASE STUDY II

CNN parameters

Inputs 28x28 images

Convolution layer l 32 5x5 kernels

Pooling layer 1
2x2

average pooling

Convolution layer 2 16 5x5 kernels

Pooling layer 2
2x2

average pooling

Reshaped vector
(Pooling layer 2 output

are flatten as a vector of size)
7x7x16=784

Output 10 labels with softmax activation

Training method Adam Optimizer
Batch size 50

Learning rate 0.0001
Maximum number of epochs 100

TABLE V
COMPARISON OF THE ACCURACY ACHIEVED BY METAMODALS IN

DIFFERENT SITUATIONS IN CASE STUDY II

Indices of
Fused Models

Classification Accuracy for Fused Models (%)

Original
Encrypted

(p = 27)

Encrypted

(p = 25)

{1} 91.5 91.5 89.6

{1, 2} 94.8 94.7 93.0

{1, 2, 3} 95.8 95.8 93.8

driven task of detecting a fading channel by using link power

data. The confidential data used in this task are from Link

Power database provided by NASA Glenn Research Center.

In the simulation, we assume that one application initiator

publishes this data-driven task and there are three computing

contributors and three randomly selected verification con-

tributors participating in the task. The link power data are

randomly divided into 4 sets each of which contains 10000
training data and 1000 testing data. Of these four sets, three

sets are used as the local data, each of which is available

to one of the three computing contributors. The other set

is considered accessible by assigned to the three randomly

selected verification contributors in the testbed. Additionally,

we assume that each computing contributor participating in

the task adopts a CNN model with 2 convolution layers and

ReLU activation function. In this case study we consider both

Scenario I Scenario II
Two Different Scenarios

90

92

94

96

98

100

C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y
(%

)
 Federated Learning Proposed Solution

Fig. 12. Performance comparison between our computing paradigm and
federated learning in two different scenarios

13

Element-wise and Matrix-Pair-wise homomorphic encryption

strategies.

To demonstrate the operation of our homomorphic encryp-

tion interface, Table VI summarizes the accuracies obtained

by each computing contributor with its private model and

local testing data with and without the encryption interface.

From these results, it is clear that implementing the encryption

interface slighted reduces the classification accuracies, which

is the cost to achieve higher security and privacy preserva-

tion. Additionally, Table VII shows the classification accuracy

achieved by the MetaModal of the application initiator, which

is obtained by fusing the individual verified private model

via fusion strategy II. From the results in Table VII, which

is obtained considering the functionality of homomorphic

encryption interface, it is clear that although the final result is

satisfactory the encryption interface slightly reduces the accu-

racy due to the introduction of randomization as explained in

Section IV-C and rounding error as discussed in Section V-C.

Furthermore, we study the impact of the homomorphic

encryption interface on the execution time. Tables VIII sum-

marizes the overhead for encryption and the time consumed to

achieve a local private model by each computing contributor

with and without encryption interface. Homomorphic encryp-

tion interface is based on Element-wise Encryption. The results

are obtained on a Corei5 CPU for 1000 testing data. ML

models are executed on TensorFlow graphs. Encryptions and

decryptions are performed using Python Numpy API. It can

be seen that the execution time with encryption interface is

only 2 times higher compared with that without encryption

interface.

VI. CONCLUSIONS

Availability of computation power and data are two of the

main reasons for the success of machine learning in a variety

of application areas. However, both acquisition of processing

power and data can be expensive. In many instances these

challenges are addressed by relying on an outsourced cloud-

computing vendor. However, although these commercial cloud

vendors provide valuable platforms for data analytics, they

can suffer from a lack of transparency, security, and privacy-

preservation. Furthermore, reliance on cloud servers prevents

applying big data analytics in environments where the comput-

ing power is scattered. Therefore, more effective computing

paradigms are required to process private and/or scattered

data in suitable decentralized ways for machine learning. To

pave the way to achieve this goal, a decentralize, secure,

and privacy-preserving computing paradigm is proposed in

this paper to enable an asynchronized cooperative computing

process amongst scattered and untrustworthy computing nodes

that may have limited computing power and computing intel-

ligence. This paradigm is designed by exploring blockchain,

decentralized learning, homomorphic encryption, and software

defined networking(SDN) techniques. The performance of

the proposed paradigm is evaluated by considering different

scenarios and comparing to a widely recognized distributed

machine learning paradigm, federated learning, in the simula-

tion section.

ACKNOWLEDGMENT

This research work was supported by NASA under Grant

80NSSC17K0530. The authors would like to thank Praveen

Fernando for assistance with the preliminary work.

REFERENCES

[1] M. van Gerven and S. Bohte, Artificial neural networks as models of

neural information processing. Frontiers Media SA, 2018.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, 2016, vol. 1.

[4] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, pp. 85–117, 2015.

[5] S. Pandiri, A. Al-Refai, and L. Lundberg, Cloud Computing - Trends

and Performance Issues: Major Cloud Providers, Challenges of Cloud

Computing, Load balancing in Clouds. LAP LAMBERT Academic
Publishing, 2012.

[6] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
Proceedings of the 22nd ACM SIGSAC conference on computer and

communications security. ACM, 2015, pp. 1310–1321.

[7] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[8] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
arXiv preprint arXiv:1610.02527, 2016.

[9] B. McMahan and D. Ramage, “Federated learning,”
https://research.googleblog.com/2017/04/federated-learning-
collaborative.html.

[10] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konecny, S. Mazzocchi, H. McMahan,
T. Overveldt, D. Petrou, D. Ramage, and J. Roselander, “Towards feder-
ated learning at scale: System design,” arXiv preprint arXiv:1902.01046,
2019.

[11] V. Buterin, “Ethereum: A next generation smart contract & decentralized
application platform,” Ethereum White Paper, 2013.

[12] H. Diedrich, Ethereum: Blockchains, Digital Assets, Smart Contracts,

Decentralized Autonomous Organizations. CreateSpace Independent
Publishing Platform, September 2016.

[13] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Septem-
ber 2009.

[14] V. Vielzeuf, S. Pateux, and F. Jurie, “Temporal multimodal fusion for
video emotion classification in the wild,” in Proceedings of the 19th

ACM International Conference on Multimodal Interaction. ACM, 2017,
pp. 569–576.

[15] S. E. Kahou, C. Pal, X. Bouthillier, P. Froumenty, Ç. Gülçehre,
R. Memisevic, P. Vincent, A. Courville, Y. Bengio, R. C. Ferrari
et al., “Combining modality specific deep neural networks for emotion
recognition in video,” in Proceedings of the 15th ACM on International

conference on multimodal interaction. ACM, 2013, pp. 543–550.

[16] G. Ye, D. Liu, I.-H. Jhuo, and S.-F. Chang, “Robust late fusion with rank
minimization,” in Computer Vision and Pattern Recognition (CVPR),

2012 IEEE Conference on. IEEE, 2012, pp. 3021–3028.

[17] N. Neverova, C. Wolf, G. Taylor, and F. Nebout, “Moddrop: adaptive
multi-modal gesture recognition,” IEEE Transactions on Pattern Analy-

sis and Machine Intelligence, vol. 38, no. 8, pp. 1692–1706, 2016.

[18] R. L. Rivest, L. Adleman, M. L. Dertouzos et al., “On data banks and
privacy homomorphisms,” Foundations of secure computation, vol. 4,
no. 11, pp. 169–180, 1978.

[19] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[20] X. Yi, R. Paulet, and E. Bertino, Homomorphic Encryption and Ap-

plications. Springer, SpringerBriefs in Computer Science, November
2014.

[21] C. Gentry and D. Boneh, A fully homomorphic encryption scheme.
Stanford University Stanford, 2009, vol. 20, no. 09.

[22] Y. Masahiro, Fully Homomorphic Encryption without bootstrapping.
LAP Lambert Academic Publishing, March 2015.

[23] T. ElGamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” IEEE transactions on information theory,
vol. 31, no. 4, pp. 469–472, 1985.

14

TABLE VI
THE ACCURACY OF FADING CHANNEL DETECTION ACCURACY USING THE PRIVATE CNN-BASED LEARNING MODELS

Model
Detection Accuracy (%)

Without Encryption Element-wise Encryption Matrix-Pair-wise Encryption

Computing Contributor 1 93 91.6 91.7

Computing Contributor 2 93.1 92.4 92.0

Computing Contributor 3 93.2 92.3 92.1

TABLE VII
DETECTION ACCURACY ACHIEVED BY USING METALMODAL

Model
Detection Accuracy (%)

Element-wise Encryption Matrix-Pair-wise Encryption

{1, 2} 94.5 94.5

{1, 2, 3} 95.5 95.0

TABLE VIII
THE IMPACT OF THE ELEMENT-WISE ENCRYPTION INTERFACE ON EXECUTION TIME

Model
Execution Time (ms)

Overhead for
Encryption

Execution without
Encryption

Execution with
Encryption

Computing
Contributor 1

7.7 60 126

Computing
Contributor 2

7.6 57 123

Computing
Contributor 3

7.6 59 125

[24] H. Zhou and G. Wornell, “Efficient homomorphic encryption on integer
vectors and its applications,” in 2014 Information Theory and Applica-

tions Workshop (ITA). IEEE, 2014, pp. 1–9.
[25] A. Yu, W. Lai, and J. Payor, “Efficient integer vector homomorphic

encryption,” May 2015.
[26] USA Patent provisional 62/663,287, 2018.
[27] Agorise, “c-ipfs: IPFS implementation in C. Why C? Think Bitshares’

Stealth backups, OpenWrt routers (decentralize the internet/meshnet!),
Android TV, decentralized Media, decentralized websites, decent.”
Github.com, October 2017.

[28] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[29] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.

com/exdb/mnist/, 1998.
[30] H. B. McMahan, E. Moore, D. Ramage, S. Hampson et al.,

“Communication-efficient learning of deep networks from decentralized
data,” arXiv preprint arXiv:1602.05629, 2016.

http://www.deeplearningbook.org

	I Introduction
	II Problem Setting
	III Proposed Blockchain-Empowered Cooperative Machine Learning Platform
	IV Implementation of Proposed Computing Paradigm
	IV-A Decentralized Storage System
	IV-B Blockchain Middleware
	IV-C Homomorphic Encryption Interface
	IV-C1 Integer-Vector Homomorphic Encryption
	IV-C2 Implementation of Artificial Neural Networks-based Machine Learning Model in Cipherspace

	IV-D Learning-Model Fusion Mechanism
	IV-D1 Strategy I
	IV-D2 Strategy II

	V Simulation Results
	V-A Blockchain-Powered SDN-Based Testbed
	V-B Case Study I
	V-C Case Study II
	V-D Case Study III
	V-E Case Study IV

	VI Conclusions
	References

